

Marine Fishery Resources Development and Management Department Southeast Asian Fisheries Developmont Cenuer
xexivic iv

DATA COLLECTION ON SHARKS AND RAYS BY SPECIES IN MALAYSIA (AUGUST 2015-JULY 2016) (TERMINAL REPORT)

By
Abd. Haris Hilmi Ahmad Arshad
Ahmad Ali
Lawrence Kissol Jr.

Department of Fisheries Malaysia and Department of Fisheries Sabah

Copyright© 2017 JABATAN PERIKANAN MALAYSIA

All Right Reserved.

This publication may be reproduced for educational and other non-commercial purposes without permission of the copyright holder, provided the source is cited and the copyright holder receives a copy of the reproduce material. Reproduce for commercial purposes is prohibited without prior written permission of the copyright holder.

ACKNOWLEDGEMENTS

The authors would like to thank The Honourable Dato' Haji Munir bin Haji Mohd Nawi, Director-General of Fisheries Malaysia, Datuk Haji Ismail bin Abu Hassan, former Director-General of Fisheries Malaysia and Mr. Zulkafli bin Abd Rashid, former Deputy Director-General of Fisheries Malaysia (Development) for their continuous support in the implementation of this project as well as the conservation and management of sharks and rays in Malaysia.

We would particularly like to thank to Dr. Chumnarn Pongsri, former Secretary-General of SEAFDEC, Dr. Kom Silapajarn, Secretary-General of SEAFDEC for their support and to Dr. Haruko Okusu from CITES Secretariat Office in Geneva for supporting this project especially for securing funding from the European Union (EU).

We are grateful to all the people for their encouragement and support in the implementation of this project especially Mr. Ahmad Adnan bin Nuruddin, former Chief of SEAFDEC/MFRDMD; Mr. Raja Bidin bin Raja Hassan, Chief of SEAFDEC/MFRDMD; Dr. Osamu Abe, former Deputy Chief of SEAFDEC/MFRDMD; Mr. Haji Sani bin Mohd Isa, former Director of Fisheries Management, Department of Fisheries Malaysia; Mr. Ahmad Hazizi bin Aziz, former Director of Planning and International, Department of Fisheries Malaysia; Ms. Tan Geik Hong, former Director of Fisheries Management, Department of Fisheries Malaysia; Mr. Abu Talib bin Ahmad, Senior Research Director, Fisheries Research Institute; Datuk Rayner Datuk Stuel Galid, former Director of the Department of Fisheries Sabah; Dr. Ahemad bin Sade, Director of the Department of Fisheries Sabah and Dr. Bah Piyan Tan, former Director of the Department of Fisheries, Perak.

We are highly appreciated of the effort by all former and Fisheries District Officers in Sabah and Perak especially Mr. Mohd Zamani bin Haji Nayan, Mr. Jum bin Abbas, Mr. Sallehudin bin Ismail and Mr. Rajandran S/O Ramasamy for helping and co-ordinated the project at states level.

Last but not least, we appreciated the services provided by enumerators Mr. Abdul Rahman bin Haji Ali Hasan (Larut Matang and Selama, Perak), Mr. Mahazir bin Baharom (Manjung Utara, Perak), Mr. Justin Agon and Mr. Norhairul bin Nordin (Kota Kinabalu, Sabah) and Mr. Chin En Kiong and Mr. Maurice@ Kassim bin Anchi (Sandakan, Sabah); supporting staff from SEAFDEC/MFRDMD Mr. Adam Luke Anak Pugas, Mr. Mohd Saki bin Noor, Mr. Nor Azman bin Zakaria, Mr. Ruzelan bin Jusoh and Mr. Wahab bin Daud; supporting staff from the Department of Fisheries Sabah Ms. Angelene Lojutan, Ms. Midah Gintin and Ms. Norsimah binti Kassim; supporting staff from FRI Kg. Acheh, Perak Mr. Hashim bin Suhaimi, Ms. Nur Fazleana binti Mohd Azlee (Industrial Training Student, UMT) and Mr. Muhammad Anuar bin Lasiman (contract staff) who are actively involved in data analysis.

EXECUTIVE SUMMARY

This project was the outcome of 'The Regional Technical Working Group on Data Collection for Sharks in Southeast Asia' held in Phuket, Thailand on $22-24$ April 2014. The European Union and The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) through the Southeast Asian Fisheries Development Center (SEAFDEC) had agreed to fund a one-year project for conducting activities in Malaysia with a grant of US $\$ 6,000$. Apart from that, the Malaysian Government allocated RM70,000 (about US $\$ 19,000$) more to ensure the smooth implementation of the project. With the funding in place, eight districts were identified with four fully sponsored by SEAFDEC and four more by the Malaysian Government.

The project aimed to enhance human resource development in elasmobranch taxonomy, to increase awareness on conservation, to improve landings data recording from generic 'sharks' and 'rays' to species level and as a preparation for Malaysia to conduct Non-detriment Findings (NDFs) study for sharks and rays in the near future. During the period of 12 months from August 2015 to July 2016, recording of landings data were conducted in eight districts, with four each in the states of Perak and Sabah. Thirteen staff from the Department of Fisheries Malaysia and the Department of Fisheries Sabah trained in shark taxonomy were involved in the endeavour, collecting data at least 12 days per month, compared to only five days per month in most of the other ASEAN member countries. Four districts, of which two facing the Straits of Malacca, namely Larut Matang and Selama, and Manjung Utara in Perak, and the districts of Kota Kinabalu and Sandakan in Sabah were selected as the study sites under the sponsorship of SEAFDEC. The other four districts that were funded by the Malaysian Government are Manjung Selatan and Hilir Perak in Perak and two on the east coast of Sabah, namely Semporna and Tawau.

For the purpose of this report, only the findings from the four SEAFDEC's funded study sites were used. The four districts are among the main landing sites of sharks and rays in both states and the landing data were collected at 13 jetties in Perak and two jetties in Sabah.

A total of 118 species of chondrichthyans belonging to 15 families of sharks (51 species) and 11 families of batoids (68 species) were recorded. Out of this 33 species of rays from nine families and 20 species of sharks from five families were recorded during the study period in Perak. For Sabah, a total of 25 spesies of rays from eight families and 21 species of sharks from 11 Families were recorded during the same period. Two species of sharks namely Carcharhinus longimanus and Heptranchias perlo confirmed found in Malaysian waters in Sabah. Another 17 species comprising of 13 species of rays and four species of sharks were unidentified and recorded at genus level or as 'cf' (close-for). Based on this study and previous research data, Malaysia recorded 70 species of sharks, 91 species of rays and one species of chimaeras. The details is as shown in Appendix II and Appendix V.

In Perak, Larut Matang recorded 19 species of rays from five families, and 14 spesies of sharks from three Families. Whereas Manjung Utara recorded 14 species of rays from four families, and six species of sharks three Families. In term of percentage of total marin landings, rays and sharks contributed 2.03% and 0.56% at Larut Matang, while for Manjung Utara at 1.38% and 0.38% respectively. For Sabah, Kota Kinabalu recorded the highest number of species with 20 rays from six families and 17 sharks from 11 families compare to Sandakan with 19 species of rays from six families and 14 sharks species from six families. The landings of rays and sharks were minimal in the state, with the contribution of 0.39% and
0.24% at Kota Kinabalu, and 1.81% and 0.53% at Sandakan respectively. These figures confirmed earlier data as published in Malaysian National Statistics that rays and sharks were only by-catch and not targeted and contributed less than 2% of the total annual marine landings.

The abundance of sharks and rays species varied between the study sites. The most abundant sharks species at Larut Matang were Chiloscyllium hasseltii, Chiloscyllium punctatum, Atelomycterus marmoratus and Carcharhinus sorrah while for rays were Neotrygon kuhlii, Himantura gerrardi, Himantura walga and Dasyatis zugei. The most abundant shark species at Manjung Utara were Chiloscyllium hasseltii, Chiloscyllium punctatum and Atelomycterus marmoratus while for rays were Himantura walga, Himantura gerrardi, Neotrygon kuhlii, and Dasyatis zugei. For Sabah, the most abundant sharks species at Kota Kinabalu were Chiloscyllium punctatum followed by Chiloscyllium plagiosum and Atelomycterus marmoratus and for rays Neotrygon kuhlii followed by Himantura gerrardi and Dasyatis zugei. As for Sandakan, the most abundant sharks species were Chiloscyllium punctatum followed by Carcharhinus sorrah and Chiloscyllium plagiosum, and for rays Neotrygon kuhlii followed by Himantura gerrardi and Taeniura lymma.

The top 10 catch per unit effort (CPUE) (kg /days and $\mathrm{kg} / \mathrm{hauls}$) for rays species captured by trawl net Zone C in Perak were Neotrygon kuhlii, Himantura gerrardi and Himantura walga, while for sharks were dominated by Chiloscyllium hasseltii, Chiloscyllium punctatum and Carcharhinus sorrah. The top 10 catch per unit effort (CPUE) rays and sharks species captured by trawl net, combined for Kota Kinabalu and Sandakan in Sabah, were determined in Zone 3 and Zone 4. For rays, Himantura gerrardi topped the list, followed by Neotrygon kuhlii and Himantura fai in Zone 3. In Zone 4, Neotrygon kuhlii was the main species, followed by Himantura fai and Himantura uarnacoides. For sharks, the top three species for both Zone 3 and Zone 4 were in the same order, with Chiloscyllium punctatum came first, followed by Chiloscyllium plagiosum and Carcharhinus sorrah.

Finally, based on the usage and marketing information gathered, this study confirmed that all sharks and rays were landed whole, indicated of these species full utilization with no finning activities on board of vessels.

CONTENTS

	ACKNOWLEDGEMENTS	iii
	EXECUTIVE SUMMARY	iv
	List of Tables	viii
	List of Figures and Appendices	xi
1.0	INTRODUCTION	1
1.1	Objective	1
1.2	Data Collection at Landing Sites	1
1.2.1	Selection of Study Sites	1
1.2.2	Fishery Structure and Background of Study Sites	3
1.2.2.1	Larut Matang	3
1.2.2.2	Manjung Utara	3
1.2.2.3	Kota Kinabalu	4
1.2.2.4	Sandakan	5
1.3	Appointment of Enumerators	6
1.4	Materials and Methods	7
1.4.1	Sampling Methods	7
1.4.2	Selection of Fishing Vessels and Sampling Activities	8
1.4.3	Classification	8
2.0	RESULTS	8
2.1	Larut Matang	8
2.1.1	Landing Samples	8
2.1.2	Fishing Ground and Catch Composition by Gear Type	9
2.1.3	Sharks and Rays Composition	11
2.1.4	Sample Size	11
2.1.5	Weight of Sharks and Rays by Species	13
2.1.6	Size Range of Sharks and Rays	16
2.1.7	Usage and Marketing	21
2.2	Manjung Utara	22
2.2.1	Landing Samples	22
2.2.2	Fishing Ground and Catch Composition by Gear Type	23
2.2.3	Sharks and Rays Composition	25
2.2.4	Sample Size	25
2.2.5	Weight of Sharks and Rays by Species	27
2.2 .6	Size Range of Sharks and Rays	29
2.2.7	Usage and Marketing	33
2.2.8	Fishing Effort and CPUE (Catch per Unit Effort)	34
2.3	Kota Kinabalu	36
2.3.1	Landing Samples	36
2.3.2	Fishing Ground and Catch Composition by Gear Type	36
2.3.3	Sharks and Rays Composition	38
2.3.4	Sample Size	38
2.3.5	Weight of Sharks and Rays by Species	39
2.3.6	Size Range of Sharks and Rays	43
2.3.7	Usage and Marketing	48
2.4	Sandakan	49
2.4.1	Landing Samples	49

2.4 .2	Fishing Ground and Catch Composition by Gear Type	50
2.4 .3	Sharks and Rays Composition	52
2.4 .4	Sample Size	53
2.4 .5	Weight of Sharks and Rays by Species	55
2.4 .6	Size Range of Sharks and Rays	57
2.4 .7	Usage and Marketing	62
2.4 .8	Catch Per Unit Effort (CPUE)	64
3.0	OUTPUT AND OUTCOME	66
4.0	FUTURE ACTIVITIES	67
5.0	CONCLUSION	68
	References	70
	Appendix I	71
	Appendix II	74
	Appendix III	77
	Appendix IV	81
	Appendix V	82

LIST OF TABLES

No	Contents	Page
Table 1	Number of Licensed Fishing Vessels by Gears and Number of Fishers at Larut Matang	3
Table 2	Number of Licensed Fishing Vessels by Gears and Number of Fishers at Manjung Utara	4
Table 3	Number of Licensed Fishing Vessels by Gears and Number of Fishers at Kota Kinabalu	4
Table 4	Number of Licensed Fishing Vessels by Gears and Number of Fishers in Sandakan	5
Table 5	Number of Landings Sampled During the Study at Larut Matang	9
Table 6	Weight of Sharks and Rays (in kg) Caught by Different Types of Gear	10
Table 7	Catch Composition of Sharks, Rays and Bony Fish by Month from 336 Landings at Larut Matang, Perak. All Weights in Kilogram.	11
Table 8	Sample Size of Sharks and Rays by Species	12
Table 9	Weight of Sharks and Rays (in Kg) by Species from 336 Landings at Larut Matang	14
Table 10A (i)	Size Range of Rays (Disc Length) Except for Rhinobatos cf. borneensis, Narcine spp, Rhychobatus australiae, R. laevis and Temera hardwickii (Total Length) from August 2015 to January 2016. All Measurements in cm.	17
Table 10A (ii)	Size Range of Rays (Disc Length) Except for Narcine spp, Rhychobatus australiae and R. laevis (Total Length) from February to July 2016. All Measurements in cm.	18
Table 10B (i)	Size Range of Sharks (Total Length) from August 2015 to January 2016. All Measurements in cm.	19
Table 10B (ii)	Size Range of Sharks (Total Length) from February to July 2016. All Measurements in cm.	20
Table 11	Price of Sharks and Rays by Species and Market Destination at Larut Matang Landing Site in 2015-2016. All Prices in RM per Kilogram. (Exchange rate RM3.70= US $\$ 1.00$)	21
Table 12	Number of Landings Sampled During the Study at Manjung Utara	23
Table 13	Weight of Sharks and Rays (in kg) Caught by Different Types of Gear	24
Table 14	Catch Composition of Sharks, Rays and Bony Fish by Month from 308 Landings at Manjung Utara, Perak. All Weights in Kilogram.	25
Table 15	Sample Size of Sharks and Rays by Species	26
Table 16	Weight of Sharks and Rays (in Kg) by Species from 360 Landings at Manjung Utara	28
Table 17A (i)	Size Range of Rays (Disc Length) Except for Rhynchobatus australiae (Total Length) from August 2015 to January 2016. All Measurements in cm.	30
Table 17A (ii)	Size Range of Rays (Disc Length) Except for Rhinobatos cf. borneensis and Rhynchobatus australiae (Total Length) from February to July 2016. All Measurements in cm .	31
Table 17B (i)	Size Range of Sharks (Total Length) from August 2015 to January	32

	2016. All Measurements in cm.	
Table 17B (ii)	Size Range of Sharks (Total Length) from February to July 2016. All Measurements in cm.	32
Table 18	Price of Sharks and Rays by Species and Market Destination at Manjung Utara. All Prices in RM per Kilogram. (Exchange rate: RM3.70= US $\$ 1.00$)	33
Table 19	Days at Operation by Gear Sampled During the Study Period in Perak (Larut Matang and Manjung Utara)	34
Table 20	Total Number of Operation by Gear Sampled during the study period in Perak (Larut Matang and Manjung Utara)	34
Table 21	Top 10 CPUE Rays Species Captured by Trawl Net C During the Study Period in Perak (Larut Matang and Manjung Utara) (kg /Fishing Effort)	35
Table 22	Top 10 CPUE Shark Species Captured by Trawl Net C During the Study Period in Perak (Larut Matang and Manjung Utara) (kg)/Fishing Effort)	35
Table 23	Number of Landings by Gear Sampled During Study at Kota Kinabalu (SAFMA Jetty)	36
Table 24	Weight of Sharks and Rays (in kg) Caught by Different Types of Gear at Kota Kinabalu (SAFMA Jetty)	37
Table 25	Catch Composition of Sharks, Rays and Bony Fish by Month from 274 Landings at Kota Kinabalu (SAFMA Jetty). All Weight in Kilogram.	38
Table 26	Sample Size of Sharks and Rays by Species at Kota Kinabalu (SAFMA Jetty)	39
Table 27	Weight of Sharks and Rays (in Kg) by Species from Kota Kinabalu (SAFMA Jetty)	41
Table 28A (i)	Size Range of Rays (Disc Length) Except for Rhinobatos borneensis and Rhynchobatus australiae (Total Length) for Six Months from August 2015 to January 2016. All Measurements in cm .	44
Table 28A (ii)	Size Range of Rays (Disc Length) Except for Rhinobatos borneensis and Rhynchobatus australiae (Total Length) for Six Months from February to July 2016. All Measurements in cm .	45
Table 28B (i)	Size Range of Sharks (Total Length) for Six Months from August 2015 to January 2016. All Measurements in cm .	46
Table 28B (ii)	Size Range of Sharks (Total Length) for Six Months from February to July 2016. All Measurements in cm .	47
Table 29	Price of Sharks and Rays by Species and Market Destination in Kota Kinabalu	48
Table 30	Number of Landings by Gear Sampled During the Study at Sandakan (Sandakan Fish Market Jetty)	50
Table 31	Weight of Sharks and Rays (in Kg) Caught by Different Types of Gear at Sandakan (Sandakan Fish Market Jetty)	51
Table 32	Catch Composition of Sharks, Rays and Bony Fish by Month from 135 Landings at Sandakan (Sandakan Fish Market Jetty). All Weight in Kilogram	52
Table 33	Sample Size of Sharks Rays by Species at Sandakan (Sandakan Fish Market Jetty)	54

Table 34	Weight of Sharks and Rays (in kg) by Species at Sandakan (Sandakan Fish Market Jetty)	56
Table 35A (i)	Size Range of Rays Species (Disc Length) Except for Rhinobatos borneensis and Rhynchobatus australiae (Total Length) for Six Months at Sandakan (Sandakan Fish Market Jetty) from August 2015 to January 2016	58
Table 35A (ii)	Size Range of Rays Species (Disc Length) Except for Rhinobatos borneensis and Rhynchobatus australiae (Total Length) for Six Months at Sandakan (Sandakan Fish Market Jetty) from February to July 2016	59
Table 35B (i)	Size Range of Sharks (Total Length) for Six Months at Sandakan (Sandakan Fish Market Jetty) from August 2015 to January 2016	60
Table 35B (ii)	Size Range of Sharks (Total Length) for Six Months at Sandakan (Sandakan Fish Market Jetty) from February to July 2016	61
Table 36	Price of Sharks and Rays by Species and Market Destination in Sandakan	62
Table 37	Days at operation by gears sampled during the study period in Sabah (Kota Kinabalu and Sandakan)	64
Table 38	Numbers of operation by gears sampled during the study period in Sabah (Kota Kinabalu and Sandakan)	64
Table 39A	Top 10 CPUE ray species captured by Trawl Net Zone 3 during the study period in Sabah (Kota Kinabalu and Sandakan)	65
Table 39B	Top 10 CPUE ray species captured by Trawl Net Zone 4 during the study period in Sabah (Kota Kinabalu and Sandakan)	65
Table 39C	Top 10 CPUE shark species captured by Trawl Net Zone 3 during the study period in Sabah (Kota Kinabalu and Sandakan)	66
Table 39D	Top 10 CPUE shark species captured by Trawl Net Zone 4 during the study period in Sabah (Kota Kinabalu and Sandakan)	66
Table 40	Output and Outcome	66

LIST OF FIGURE AND APPENDICES

No	Contents	Page
Figure 1	Location of Study Sites in the State of Perak	2
Figure 2	Location of Study Sites in the State of Sabah	2
Appendix I	Sample of standard form (Data Collection Project on Sharks and Rays Data Collection)	71
Appendix II	Checklist of Sharks and Rays Species Recorded During the Study Period	$74-76$
Appendix III	Photos of Preparation and Actual Implementation of the Program in Malaysia	$77-80$
Appendix IV	Range size of small, medium and big by species (in cm). Disc length for all rays (except for species in family Rhinobatidae, Rhynchobatidae and Rhinidae) and Total Length for all shark species	81
Appendix V	Check list of Sharks, Rays, skates and chimaeras in Malaysia 2016	$82-92$

.

1.0 INTRODUCTION

Malaysia is a home to a rich diversity of sharks, rays, skate and chimaeras (Class Chondrichthyes). However, sharks and rays landings contribute only about 1% and 2% of total marine landings respectively. Until 2016, Malaysia recorded 162 species of Chondrichthyans comprising 70 sharks, 85 rays, six skates and one chimaera, belonging to 18 families of sharks, 12 rays, two skates and one chimaera. The high diversity of sharks was recorded from the Order Carcharhiniformes with 50 species and Orectolobiformes with 10 species. However, low diversity was recorded for the Orders Hexanchiformes with three species, and Lamniformes and Squatiniformes with two species respectively. Species diversity in the Order Heterodontiformes was scanty where only one species was recorded. As for batoids, high diversity was recorded for the Order Myliobatiformes with 62 species followed by Torpediniformes with 12 species and Rhinobatiformes with eight species. Only six species were recorded from the Order Rajiformes and three species from Pristiformes. Even though the number of chondrichthyans species recorded in Malaysia was more than 160, the actual status of its biodiversity is still unknown. With new species continuously discovered, the number is expected to increase in the future. At present the deep water species are mostly unknown due to limited research activities. Most sharks and rays species landed especially from the Families Carcharhinidae and Dasyatidae and are very difficult to identify up to species level by untrained and inexperienced enumerators. Only well trained staff will be able to make the right and valid identification of species (Ahmad and Annie Lim, 2012).

1.1 Objective

The objectives of this project were:

- to enhance human resource development in elasmobranch taxonomy, and
- to improve landing data recording from generic 'sharks' and 'rays' to species level.

1.2 Data Collection at Landing Sites

1.2.1 Selection of Study Sites

The State of Perak on the west coast of Peninsular Malaysia is a major landing state for sharks and rays. Two districts facing the Straits of Malacca, namely Larut Matang and Selama, and Manjung Utara were selected as the study sites as they were the main landing sites of sharks and rays in the state. The landing data were collected at 13 jetties i.e 10 in Larut Matang and Selama and three in Manjung Utara. The landing sites are private enterprises with most of the sharks and rays landing coming from trawlers. The location of all landing sites are shown in Figure 1.

Figure 1: Location of Study Sites in the State of Perak
Sabah, with the population of 3.544 million (2015 census) is the second largest state in Malaysia, nicknamed 'Negeri Di Bawah Bayu' or Land Below The Wind and occupying the northern part of Borneo. The total land area of Sabah is about 73,631 square kilometres and famed for its 4,095 meter-tall Mt. Kinabalu, the highest peak in the country, as well as for its ethnic diversity, serene beaches, virgin rainforest, coral reefs and abundant flora and fauna species. Surrounded by South China Sea in the west, Sulu Sea in the northeast and Celebes (Sulawesi) Sea in the northeast, Sabah is indeed blessed with its marine resources, In 2015, the landing of marine fish in the state was 175,443 metric tonnes (mt) with the value of RM902.5 million. Sabah maintained its status as a net exporter of fisheries commodities, amounting 74,973 metric tonnes with the value of RM851.7 million in 2014.

There are 16 coastal districts in Sabah and for the purpose of this project, Sandakan in the east and Kota Kinabalu in the west, were selected as the study sites, due to the fact that both districts are major fisheries landing points in Sabah (Figure 2)

Figure 2 : Location of Study Sites in the State of Sabah

1.2.2 Fishery Structure and Background of Study Sites

1.2.2.1 Larut Matang

Larut Matang is one of the major landing sites for sharks and rays in Perak. All jetties belong to private enterprises. The major gears were trawl nets (583), followed by drift nets (144) and purse seine (29). All trawlers are normally operated by 4-5 crew members. Almost all of the sharks and rays were landed by trawlers operating beyond eight nautical miles from the coastline. Fishing operation normally between 5-12 days per trip. All catches were landed from $0500 \mathrm{hr}-1000 \mathrm{hr}$. The details of fishing vessels registered in this district are shown in Table 1.

Table 1: Number of Licensed Fishing Vessels by Gears and Number of Fishers at Larut Matang

Gear Type	Fishing Zone	Fishing operation (from coastline)	No. of Vessels	No. of Fishers
Trawlers				
$10-24.9$ GRT	B	$>8 \mathrm{~nm}$	380	760
$25-39.9$ GRT	B	$>8 \mathrm{~nm}$	20	26
$39.9-69.9$ GRT	C	$>12 \mathrm{~nm}$	174	306
>70 GRT	C 2	$>15 \mathrm{~nm}$	9	36
Total			$\mathbf{5 8 3}$	$\mathbf{1 , 1 2 8}$
Purse Seiners				
>70 GRT	C 2	$>15 \mathrm{~nm}$	29	721
Total			$\mathbf{2 9}$	$\mathbf{7 2 1}$
Drift Netters	A	All areas	144	514
Longliners	A	All areas	15	15
Others (Fish trap etcs.)	A	All areas	954	1,260
Total			$\mathbf{1 , 1 1 3}$	$\mathbf{1 , 7 8 9}$
Grand Total			$\mathbf{1 , 7 2 5}$	$\mathbf{3 , 6 3 8}$

1.2.2.2 Manjung Utara

All jetties in Manjung Utara belong to private enterprises. The major gears were drift nets (560), followed by trawl nets (242) and purse seine (16). Other gears were longline (10) and handline (5). The details of the fishing vessels registered in this district are shown in Table 2. The major gears landing sharks and rays were trawl nets, gill nets and longlines. All trawlers are normally operated by 4-5 crew members. However, the number of crew for traditional gears such as gillnets and longlines was normally 2-3 fishers. The fishing operation for trawlers was normally between 5-12 days per trip while longlines and gill nets were normally a daily trip. All catches were landed from $0730 \mathrm{hr}-1200 \mathrm{hr}$.

Table 2: Number of Licensed Fishing Vessels by Gears and Number of Fishers at Manjung Utara

Gear Type	Fishing Zone	Fishing operation (from coastline)	No. of Vessels	No. of Fishers
Trawlers				
$10-24.9$ GRT	B	$>8 \mathrm{~nm}$	217	434
$25-39.9$ GRT	B	$>8 \mathrm{~nm}$	1	4
$39.9-69.9$ GRT	C	$>12 \mathrm{~nm}$	23	92
>70 GRT	C 2	$>15 \mathrm{~nm}$	1	7
Total			$\mathbf{2 4 2}$	$\mathbf{5 3 7}$
Purse Seiners				
$40-69.9$ GRT	C	$>12 \mathrm{~nm}$	3	83
>70 GRT	C 2	$>15 \mathrm{~nm}$	13	312
Total			$\mathbf{1 6}$	$\mathbf{3 9 5}$
Drift Netters	A	All Areas	560	1,103
Longliners	A	All Areas	10	20
Handliners	A	All Areas	5	5
Others	A	All Areas	20	20
Total			$\mathbf{5 9 5}$	$\mathbf{1 , 1 4 8}$
Grand Total			$\mathbf{8 5 3}$	$\mathbf{2 , 0 8 0}$

1.2.2.3 Kota Kinabalu

Sabah Fisheries Marketing Authority (SAFMA) Jetty is the biggest fish landing jetty in Kota Kinabalu district. Commercial fishing vessels mainly operating trawl nets and purse seines landed their catch here on a daily basis. There are estimated around 30 fishing vessels utilizing the jetty during a particular period of landing time allowed, which is from 12 midnight untill noon the next day.

There are 224 trawlers in Kota Kinabalu compare to purse seines which are only around 41 . The operation duration per trip of trawl nets is up to a week while the purse seine's operations only take up to three days the most. The details of commercial fishing vessels in Kota Kinabalu are shown in Table 3.

Table 3: Number of Licensed Fishing Vessels by Gears and Number of Fishers in Kota Kinabalu

Gear Type	Fishing Zone	Fishing Operation (from coastline) (Nautical Mile)	No. of Vessels	No. of Fishers
Trawlers				
$<10 \mathrm{GRT}$	West Coast	$>3 \mathrm{~nm}$	9	
$10-24.9 \mathrm{GRT}$	West Coast	$>3 \mathrm{~nm}$	51	27
$25-39.9 \mathrm{GRT}$	West Coast	$>3 \mathrm{~nm}$	124	180
$40-69.9 \mathrm{GRT}$	West Coast	$>3 \mathrm{~nm}$	27	496
>70 GRT	West Coast	$>30 \mathrm{~nm}$	13	79
Total			$\mathbf{2 2 4}$	$\mathbf{9 0 5}$

Gear Type	Fishing Zone	Fishing Operation (from coastline) (Nautical Mile)	No. of Vessels	No. of Fishers
Purse Seiners				
$25-39.9 \mathrm{GRT}$	West Coast	$>3 \mathrm{~nm}$	17	
$40-69.9 \mathrm{GRT}$	West Coast West Coast	$>3 \mathrm{~nm}$ >70 GRT	$>30 \mathrm{~nm}$	21
Total			3	308
Grand Total			$\mathbf{4 1}$	54

1.2.2.4 Sandakan

Sandakan was the first capital city of Sabah and used to be dubbed as 'Little Hong Kong' due to the booming commercial port activities back then. Sandakan has the highest number of trawl net vessels is Sabah, which is around 457 compare to 1,069 total of trawl net vessels state wide. In a big contrast, there are only twelve purse seines vessels operating in Sandakan waters. Sandakan is ranked third in marine fish landing in 2015 with $18,700 \mathrm{mt}$, behind Kota Kinabalu ($61,800 \mathrm{mt}$) and Kudat ($24,600 \mathrm{mt}$). The total landing of the state during that year was $175,400 \mathrm{mt}$. There are a number of fish landing jetties in Sandakan but the main landing point in the district is the Sandakan Fish Market Jetty where 45 estimated fishing vessels of various sizes landed their catch daily. The details of commercial fishing vessels in Sandakan are shown in Table 4.

Table 4: Number of Licensed Fishing Vessels by Gears and Number of Fishers in Sandakan.

Gear Type	Fishing Zone	Fishing Operation (from coastline) (Nautical Mile)	No. of Vessels	No. of Fishers
Trawlers				
<10 GRT	East Coast	$>3 \mathrm{~nm}$	7	19
$10-24.9$ GRT	East Coast	$>3 \mathrm{~nm}$	172	520
$25-39.9$ GRT	East Coast	$>3 \mathrm{~nm}$	209	820
$40-69.9$ GRT	East Coast	$>3 \mathrm{~nm}$	69	380
>70 GRT	East Coast	$>30 \mathrm{~nm}$	0	0
Total			$\mathbf{4 5 7}$	$\mathbf{1 , 7 3 9}$
Purse Seiners				
		$>3 \mathrm{~nm}$	6	57
$40-69.9$ GRT	East Coast		$\mathbf{n m}$	114
>70 GRT	East Coast		$\mathbf{1 2}$	$\mathbf{1 7 1}$
Total			$\mathbf{4 6 9}$	$\mathbf{1 , 9 1 0}$
Grand Total				

1.3 Appointment of Enumerators

Two Assistant Fisheries Officers from the State Fisheries Office of Perak and two Assistant Fisheries Officers from the Department of Fisheries Sabah were appointed as enumerators for each district or study site. Their names and addresses are as follows:

Study site 1: Larut Matang and Selama, Perak
Mr. Abdul Rahman bin Haji Ali Hasan Pejabat Perikanan Daerah Taiping Tingkat 6, Wisma Persekutuan, Jalan Istana Larut 34000 Taiping, Perak. Tel: +6 058075311 Email: abd.rahman0865@gmail.com Study site 2: Manjung Utara, Perak Mr. Mahazir bin Baharom Pejabat Perikanan Daerah Manjung Utara Jalan Damar Laut 34900 Pantai Remis Perak Darul Ridzuan Tel: +6 056772224 Email: Mahazirbaharom@yahoo.com Study site 3: Kota Kinabalu, Sabah Mr. Justin Agon Senior Assistant Fisheries Officer Department of Fisheries Sabah Jalan Haji Saman 88000 Kota Kinabalu Sabah, MALAYSIA. Tel No.: +6 088 262359 Email : Justin.agon@sabah.gov.my Mr. Norhairul Bin Nordin Assistant Fisheries Officer Department of Fisheries Sabah Wisma Pertanian Sabah, Jalan Tasik Luyang (Off Jalan Maktab Gaya) 88624, Kota Kinabalu Sabah, MALAYSIA. Tel No.: +6 088 235966 Ema Email: Hairul_elut@yahoo.com Study site 4 : Sandakan, Sabah Mr. Chin En Kiong Senior Assistant Fisheries Officer

```
Department of Fsiheries Sabah
P.O. BOX 1369,
90715, Sandakan,
Sabah, MALAYSIA
Tel No.: +6 089 208870
Email: EnKiong.Chin@sabah.gov.my
Mr. Maurice @ Kassim bin Anchi
Senior Assistant Fisheries Officer
Department of Fisheries Sabah
P.O. BOX 1369,
90715, Sandakan,
Sabah, MALAYSIA
Tel No.: +6 089 208870
Email: Maurice.anchi@sabah.gov.my
National Coordinator and Project Coordinator for Perak:
Mr. Abd Haris Hilmi bin Ahmad Arshad
Senior Researcher
Fisheries Research Institute, Capture Fisheries Division
Kompleks Perikanan Kampung Acheh, Department of Fisheries Malaysia
32000 Sitiawan Perak, MALAYSIA
Tel: +6 056914752
Email: haris_hilmi@dof.gov.my
Project Coordinator for the Sabah :
Mr. Lawrence Kissol
Assistant Director (Marine Resource Management)
Department of Fisheries Sabah
Wisma Pertanian Sabah, Jalan Tasik Luyang (Off Jalan Maktab Gaya)
88624, Kota Kinabalu,
Sabah, MALAYSIA.
Tel No.: +6 088 235966
Email: Lawrence.kissol@sabah.gov.my
```


1.4 Materials and Methods

1.4.1 Sampling Methods

The sampling activity started in August 2015 until July 2016. All enumerators were requested to record landing data and other related information in a standard form at least 12 days per month. A standard SOP entitled 'SOP Sharks and Rays Data Collection in the Southeast Asian Waters' was produced. The content included Standard Operation Procedure and instructions to enumerators on how to measure, weigh, record sharks and rays species at sampling sites, name of enumerator, name of landing site, date of sampling, vessel registration number, vessel GRT, fishing area, price at landing sites, name of species (common name and scientific name), total catch of sharks, rays, commercial and low-value species from each sampling vessel.

The details of the standard form are shown in Appendix I. The completed data in excell were then submitted to the respective National Coordinator before submitted to SEAFDEC/MFRDMD before second week of the following month for verification. The data were analysed at the end of each quarter.

1.4.2 Selection of Fishing Vessels and Sampling Activities

Between 1-3 fishing vessels were selected for sampling each day for 12 days per month at each landing site. Measurement of Total length (TL) were taken for all skates, sharks and rays species from the Families Rhynchobatidae, Rhinobatidae and Narcinidae. While Disc Length (DL) were taken for all ray species where the tail is frequently absent or damaged (mainly from the Families Dasyatidae, Gymnuridae and Mobulidae). All sharks and rays specimens were measured and weighed individually if the total number was less than 50 tails per vessel. If the total number was more than 50 tails, only $10-50 \%$ were measured. The maturity stage for each individual was estimated according to Yano et al. (2005) and Ahmad and Annie Lim (2012). The total catch of all sharks and rays by species as well as the total catch of commercial and low-value species were also recorded for each sampling vessel. Some samples were brought back to the Fisheries Research Institute, Capture Fisheries Division, Kg. Acheh Sitiawan Perak and Fisheries Research Center, Likas, Kota Kinabalu for preservation and future references. Larger specimens were photographed, and their basic taxonomic and biological characteristics noted.

1.4.3 Classification

The classification (scientific names) used in this report follows that of Compagno (1999), Yano et al. (2005), Ahmad and Annie Lim (2012), Ahmad et al. (2013) and Ahmad et al. (2014), and Ebert et al. (2013).

2.0 RESULTS

2.1 Larut Matang

2.1.1 Landing Samples

A total of 336 landings were sampled during the study period. The highest by month was 33 in October followed by 29 in December 2015. The highest by gear type was 263 Zone C trawl net followed by 39 of longline, 14 of Zone C2 and 13 of Zone B trawl net. The details are shown in Table 5.

Table 5: Number of Landings Sampled during the study at Larut Matang

Type of Gear	Year/Month												
	2015					2016							
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Grand Total
Drift Net	1		1	2	1							1	6
Longline	2	2	7	2	2		4	4	9	2	2	3	39
Purse Seine C2		1											1
Trawl Net B		2	3	2	1	1	3		1				13
Trawl Net C	22	22	21	20	23	26.	19	24	18	23	23	22	263
Trawl Net C2	3	1	1	1	2		2			1	2	1	14
Total	28	28	33	27	29	27	28	28	28	26	27	27	336

2.1.2 Fishing Ground and Catch Composition by Gear Type

The main gear landing sharks at Larut Matang was trawl net at $5,344.7 \mathrm{~kg}(67.0 \%)$ followed by purse seine and drift net at very small amount (22 kg) while longline, which operated up to 30 nautical miles from the coastline landed the highest rays at $2,077 \mathrm{~kg}(26.0 \%)$ followed by drift net at 314 kg (3.9%) and trawl net at $219 \mathrm{~kg}(2.7 \%)$. Most trawlers operated beyond eight nautical miles from the coastline. Zone C trawl net landed the highest at $4,912 \mathrm{~kg}$ followed by Zone C2 trawl net (399 kg) and Zone B at 33 kg . The highest landing of rays by month was from longline at 499.6 kg in December 2015, while in April and July 2016 were 425.5 kg and 261.9 kg respectively. The highest landing of sharks by month came from Zone C trawl net in August 2015 at 600.4 kg followed by 542.2 kg in October 2015 and 501 kg in May 2016. The details are shown in Table 6.
Table 6: Weight of Sharks and Rays (in kg) Caught by Different Types of Gear

Type of Gear	Year/Month												
	2015					2016							
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Grand Total
Drift Net	23.3			163.0	97.2							30.6	314.0
Longline	53.1	48.5	158.9	51.1	499.6		153.5	155.9	407.0	106.5	162.7	261.9	2,077.0
Trawl Net B		10.1	21.6		19.1		5.8						56.6
Trawl Net C	75.9	57.7					2.6	26.3					162.5
Total Catch Ray	152.3	116.3	180.5	214.0	615.9		161.9	182.2	407.0	106.5	162.7	292.4	2,610.1
Drift Net			4.8										4.8
Purse Seine C2		17.1											17.1
Trawl Net B		2.5	2.6	5.5		19.5	1.8		1.1				33.0
Trawl Net C	600.4	397.9	542.2	461.4	350.7	469.6	287.3	248.4	375.4	501.9	313.8	363.2	4,912.3
Trawl Net C2	134.0	26.8	22.7	36.4	29.6		57.5			27.6	41.5	23.3	399.4
Total Catch Shark	734.4	444.2	572.3	503.3	380.3	489.2	346.6	248.4	376.5	529.5	355.3	386.4	5,366.5
Grand Total	886.7	560.6	752.8	717.3	996.2	489.2	508.4	430.6	783.5	636.0	518.0	678.9	7,976.6

2.1.3 Sharks and Rays Composition

A total of $1,578,271 \mathrm{~kg}$ of fish was landed from 336 landings during the study period. Rays and sharks made up $24,570 \mathrm{~kg}$ and $5,439 \mathrm{~kg}$ (1.4% and 0.4%) from the total landing respectively. Landings of bony fish was $1,548,281.8 \mathrm{~kg}$ or 98.2%. Average landings per month for sharks and rays were 453 kg and $2,048 \mathrm{~kg}$ respectively. The highest landing by month for rays was $8,790 \mathrm{~kg}$ in July, followed by $3,229 \mathrm{~kg}$ in May and $2,905 \mathrm{~kg}$ in June 2016. However, the highest landing for sharks was 807 kg in August 2015 followed by 572 kg in October 2015 and 530 kg in May 2016. In general, the landing of sharks and rays ranged between $0.2-0.8 \%$ and $0.7-4.7 \%$ respectively from total landing. The details are shown in Table 7.

Table 7: Catch Composition of Sharks, Rays and Bony Fish by Month from 336 Landings at Larut Matang, Perak. All Weights in Kilogram.

Year	Month	Weight of Ray	$\begin{gathered} \hline \% \\ \text { Ray } \\ \hline \end{gathered}$	Weight of Shark	\% Shark	$\begin{gathered} \text { Weight of Bony } \\ \text { Fish } \end{gathered}$	\% Bony fish	Total Catch
2015	Aug	1,042.0	1.0	806.6	0.8	106,068.8	98.2	107,917.4
	Sep	1,199.2	0.9	444.2	0.3	137,587.5	98.8	139,230.9
	Oct	995.2	0.8	572.3	0.4	127,670.4	98.8	129,237.8
	Nov	1,110.5	0.8	503.3	0.3	146,917.7	98.9	148,531.5
	Dec	1,624.5	1.2	380.3	0.3	128,509.0	98.5	130,513.8
2016	Jan	985.8	0.7	489.2	0.4	133,506.1	98.9	134,981.0
	Feb	848.9	0.8	346.6	0.3	103,115.9	98.9	104,311.4
	Mar	759.8	0.7	248.4	0.2	114,584.1	99.1	115,592.3
	Apr	1,080.6	1.1	376.5	0.4	94,069.2	98.5	95,507.8
	May	3,228.5	2.2	529.5	0.4	141,227.4	97.4	144,985.4
	Jun	2,905.1	2.1	355.3	0.3	135,508.2	97.6	138,768.6
	July	8,789.7	4.7	386.4	0.2	179,517.5	95.1	188,693.6
Grand Total		24,569.8		5,438.6		1,548,281.8		1,578,271.5
Average		2,047.5	1.4	453.2	0.4	129,023.5	98.2	131,522.6

2.1.4 Sample Size

A total of 8,039 tails belonging to 4,873 rays and 3,166 sharks were sampled comprising 19 species of rays and 14 species of sharks during the study period. The most common and abundant rays species were Neotrygon kuhlii, Himantura gerrardi, H. walga and Dasyatis zugei. Other common rays species were Rhynchobatus australiae, Himantura pastinacoides and Dasyatis akajei. All these species were landed throughout the year. Other rays species such as Dasyatis thetidis, Himantura undulata, Rhinobatos cf. borneensis, Rhynchobatus laevis, were only landed between 1-3 months. The highest number of rays sampled by month was 474 tails in August followed by 455 tails in September 2015 and 446 tails in January 2016.

The most common and abundant sharks species recording in 12 months were Chiloscyllium hasseltii, C. punctatum and Atelomycterus marmoratus. Other common sharks species were Atelomycterus cf. ermanni and Carcharhinus sorrah. These species were landed between 10 12 months. Other sharks species such as Carcharhinus brevipinna, C. limbatus, C. leucas and Galeocerdo cuvier were only landed between 1-2 months. The highest number of sharks sampled by month was 324 tails in May, followed by 323 tails in January 2016 and 303 tails in August 2015. The details are as shown in Table 8.
Table 8: Sample Size of Sharks and Rays by Species

Species	Year/Month												
	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Dasyatis akajei	1	2	12	11	1		5	8	11	3	4	1	59
Dasyatis thetidis				1									1
Dasyatis zugei	106	103	89	65	77	94	55	84	56	70	70	56	925
Himantura cf. gerrardi					1								1
Himantura fai										4	3		7
Himantura gerrardi	107	99	89	81	116	120	100	109	82	99	92	114	1,208
Himantura jenkinsii	2	1	1	1		1	1				3	1	11
Himantura pastinacoides	8	4	5	10	5		4	3	5	5	1	8	58
Himantura uarnak											1		1
Himantura undulata				1	3								4
Himantura walga	108	117	97	88	89	97	68	83	53	92	67	54	1,013
Narcine maculata	2												2
Narcine sp				10			2						12
Neotrygon kuhlii	127	125	121	92	124	113	103	118	96	141	104	135	1,399
Rhinobatos cf. borneensis				5	4								9
Rhynchobatus australiae	12	4	3	18	16	19	13	13	8	18	15	17	156
Rhynchobatus laevis			1							1	1		3
Temera hardwickii	1												1
Narcine sp D					4	2							6
Total Rays	474	455	418	383	440	446	351	418	311	433	361	386	4,873
Atelomycterus cf. baliensis	2	14	1	1	3	3				1	1		26
Atelomycterus cf. erdmanni	9	19	18	19	15	27	13	2	5	8	5	5	145
Atelomycterus marmoratus	52	52	31	30	33	58	50	35	35	48	26	40	490
Carcharhinus brevipinna			5	5									10
Carcharhinus leucas			1	2									3
Carcharhimus limbatus	1												1
Carcharhinus sorrah	9	2	11	6	2			4	52	73	38	11	208
Chiloscyllium cf.hasseltii						2							2
Chiloscyllium hasseltii	111	97	116	107	124	134	108	88	85	112	84	76	1,242
Chiloscyllium indicum		6	5				3	2	1				17
Chiloscyllium punctatum	120	106	105	81	91	99	80	71	51	81	58	76	1,019
Chiloscyllium sp.				1									1
Galeocerdo cuvier			1	1									2
Scoliodon laticaudus										1			1
Total Sharks	304	296	294	253	268	323	254	202	229	324	212	208	3,166
Grand Total	778	751	712	635	708	769	605	620	540	757	573	593	8,039

2.1.5 Weight of Sharks and Rays by Species

A total of $23,702 \mathrm{~kg}$ was landed from 336 landings comprising $18,351 \mathrm{~kg}$ of rays and 5,352 kg of sharks. For rays, the highest landing by weight was Himantura gerrardi amounting to $7,021 \mathrm{~kg}$, followed by $5,053 \mathrm{~kg}$ of Neotrygon kuhlii and 1,938 kg of Himantura fai. The highest landing by month for Himantura gerrardi was $1,465 \mathrm{~kg}$ in July 2016, followed by 891 kg in December 2015 and 802 kg in Jun 2016. For Neotrygon kuhlii, the highest landing was 863 kg in May, followed by 814 kg in July and 674 kg in June 2016. For Himantura fai, the highest landing was $1,700 \mathrm{~kg}$ in May followed by 238 kg in June 2016. Other important species based on high landing were Himantura jenkinsii (992 kg), H. walga (994 kg), H. pastinacoides (688 kg), Dasyatis zugei (683 kg), Rhynchobatus australiae (408 kg) and Dasyatis akajei at 341 kg . Landing of other species was below 100 kg .

The highest landing of shark species was $2,433 \mathrm{~kg}$ for Chiloscyllium hasseltii followed by $1,835 \mathrm{~kg}$ for Chiloscyllium punctatum, 541 kg for Carcharhinus sorrah and 343 kg for Atelomycterus marmoratus. The highest landing by month for Chiloscyllium hasseltii was 329 kg in August 2015 followed by 275 kg in January 2016 and 268 kg in October 2015. For Chiloscyllium punctatum, the highest landing was 306 kg in August followed by 211 kg in October and 204 kg in September 2015. Landing of other species was below 100 kg . The details are shown in Table 9.
Table 9: Weight of Sharks and Rays (in Kg) by Species from 336 Landings at Larut Matang

Species	Year/Month												
	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Dasyatis akajei	1.0	15.8	79.3	66.4	4.8		18.8	44.5	65.5	17.3	19.7	7.7	340.7
Dasyatis thetidis				81.0									81.0
Dasyatis zugei	82.5	80.4	57.1	54.8	46.4	66.5	40.4	50.9	39.6	52.3	54.5	57.9	683.2
Himantura cf. gerrardi					19.1								19.1
Himantura fai										1,700.0	238.0		1,938.0
Himantura gerrardi	373.3	458.7	336.7	397.0	891.3	508.2	452.3	360.5	596.0	380.7	801.7	1,464.9	7,021.2
Himantura jenkinsii	3.6	4.6	1.6	1.4		10.5	0.8				960.0	9.2	991.7
Himantura pastinacoides	72.3	32.7	39.1	122.5	28.8		61.8	66.3	78.1	91.7	26.0	68.5	687.7
Himantura uarnak											56.0		56.0
Himantura undulata				29.1	63.6								92.7
Himantura walga	113.3	125.9	93.3	67.5	80.5	62.6	52.1	69.1	50.0	101.2	48.6	80.3	944.2
Narcine maculata	1.3												1.3
Neotrygon kuhlii	374.3	469.9	379.8	233.0	424.4	288.8	169.2	138.2	224.5	863.4	673.6	814.1	5,053.3
Rhinobatos cf. borneensis				8.4	6.3				.				14.7
Rhynchobatus australiae	20.3	11.2	5.3	42.6	55.7	47.7	52.6	30.3	27.1	21.5	23.4	70.0	407.8
Rhynchobatus laevis			2.9							0.5	1.9		5.3
Temere hardwickii	0.1												0.1
Narcine sp				6.9			0.9						7.8
Narcine sp D					3.6	1.5							5.0
Total Weight Rays	1,042.0	1,199.2	995.2	1,110.5	1,624.5	985.8	848.9	759.8	1,080.6	3,228.5	2,903.4	2,572.5	18,350.7
Atelomycterus cf. baliensis	0.8	8.8	0.3	0.4	1.0	1.4				0.5	0.6		13.6
Atelomycterus cf. erdmanni	3.9	21.0	6.9	8.6	6.4	14.2	5.6	1.0	2.4	3.4	2.1	1.8	77.2
Atelomycterus marmoratus	60.2	35.5	13.6	15.5	14.6	38.2	42.3	19.4	15.8	49.8	13.1	24.7	342.6
Carcharhinus brevipinna			13.5	13.3									26.8

	2015 Year/Month												
Species	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Carcharhinus leucas			4.8	33.2									38.0
Carcharhinus limbatus	1.4												1.4
Carcharhinus sorrah	33.1	20.0	37.4	27.3	8.2			7.5	128.6	158.0	84.4	37.0	541.5
Chiloscyllium cf. hasseltii						1.9							1.9
Chiloscyllium hasseltii	328.7	152.7	268.0	227.0	219.1	274.8	196.4	113.1	142.1	193.6	162.2	155.8	2,433.6
Chiloscyllium indicum		2.3	2.0				0.9	0.9	0.4				6.4
Chiloscyllium punctatum	306.3	204.0	211.1	144.8	131.1	158.6	101.3	106.6	87.3	124.0	93.0	167.2	1,835.3
Chiloscyllium sp				0.4									0.4
Galeocerdo cuvier			14.6	18.1									32.7
Scoliodon laticaudus										0.3			0.3
Total Weight Sharks	734.4	444.2	572.3	488.5	380.3	489.2	346.6	248.4	376.5	529.5	355.3	386.4	5,351.7
Grand Total	1,776.4	1,643.4	1,567.5	1,599.0	2,004.8	1,474.9	1,195.5	1,008.2	1,457.1	3,758.0	3,258.7	2,959.0	23,702.4

2.1.6 Size Range of Sharks and Rays

In general from August 2015 to January 2016, both mature and immature rays species were sampled. Generally, rays species sampled were mature except for Himantura gerrardi, Himantura cf. gerrardi, H. jenkinsii, Rhynchobatus australiae and R. laevis. The average size of Himantura gerrardi ranged between $33.1-39.9 \mathrm{~cm}$ disc length. Most adult sized of Himantura gerrardi were immediately removed by middlemen upon being landed. First maturing size for Himantura gerrardi is about 59.0 cm (disc width). Male of Rhynchobatus australiae mature at 130 cm total length and female mature at 155 cm . However, almost all samples of Dasyatis zugei, Neotrygon kuhlii and Rhinobatos cf. borneensis were mature. Size range of rays species from August 2015 to January 2016 are shown in Table 10A (i). Ray species sampled from February to July 2016 were mature except for Himantura gerrardi, H. jenkinsii and Rhynchobatus australiae. Almost all specimens of Dasyatis zugei, Neotrygon kuhlii and Himantura walga were matured. Size range of rays sampled from February to July 2016 are shown in Table 10A (ii).

Most of shark species sampled between August 2015 to January 2016 were mature except for Carcharhinus brevipinna, C. leucas, C. limbatus, C. sorrah and Galeocerdo cuvier. Mature size for female of C. brevipinna is ranged between $170-220 \mathrm{~cm}$ total length and for male between 159-203 cm. First maturing size for female for C. leucas is ranged between 180230 cm total length and for male between $197-226 \mathrm{~cm}$. For Carcharhinus sorrah female is mature when total length between $110-118 \mathrm{~cm}$ and for female between $103-128 \mathrm{~cm}$. Size range of all sharks species sampled from August 2015 to January 2016 are shown in Table 10B (i). Almost all shark species sampled between February to July 2016 were mature except for Carcharhinus sorah. Size range of all sharks sampled from February to July 2016 are shown in Table 10B (ii).
Table 10A (i): Size Range of Rays (Disc Length) Except for Rhinobatos cf. borneensis, Narcine spp, Rhychobatus australiae, R. laevis and Temera hardwickii (Total Length) from August 2015 to January 2016. All Measurements in cm.

Species	Year/Month																	
	2015															2016		
	Aug			Sep			Oct			Nov			Dec			Jan		
Rays	Min	Max	Av															
Dasyatis akajei	25.5	25.5	25.5	54.0	58.0	56.0	37.0	63.0	48.9	30.0	59.0	49.0	47.0	47.0	47.0			
Dasyatis thetidis										120.0	120.0	120.0						
Dasyatis zugei	16.0	33.0	23.7	15.0	33.0	23.5	15.0	32.0	24.1	19.0	34.0	24.6	16.0	33.0	24.3	15.5	33.0	23.5
Himantura cf. gerrardi													75.0	75.0	75.0			
Himantura gerrardi	17.0	57.0	33.6	17.5	64.0	33.1	20.0	78.0	35.4	20.0	93.0	37.4	17.0	96.0	39.9	14.5	66.0	34
Himantura jenkinsii	30.0	37.0	33.5	46.0	46.0	46.0	33.0	33.0	33.0	32.0	32.0	32.0				59.0	59.0	59.0
Himantura pastinacoides	27.0	75.0	55.5	52.0	64.0	57.0	49.0	61.0	56.6	41.0	64.0	54.5	40.0	53.0	45.1			
Himantura undulata										93.0	93.0	93.0	26.0	116.0	56.7			
Himantura walga	16.0	25.5	20.1	16.0	25.0	20.2	16.5	25.5	20.6	16.5	25.0	20.9	16.5	28.0	20.8	13.5	25	20.3
Narcine maculata	29.5	43.5	36.5															
Narcine sp.										31.5	38.0	34.5						
Neotrygon kuhlii	14.0	36.0	21.4	14.0	32.0	22.0	14.0	32.0	22.3	14.0	31.0	22.2	15.0	33.0	22.4	15.0	30.5	21.7
Rhinobatos cf. borneensis										78.5	89.0	83.4	75.0	80.5	78.4			
Rhynchobatus australiae	29.5	85.0	65.3	50.0	113.0	73.5	53.0	92.0	67.3	48.5	126.0	73.3	48.0	146.0	77.4	47.0	116.0	71.0
Rhynchobatus laevis							84.0	84.0	84.0									
Temera hardwickii	12.5	12.5	12.5															
Narcine sp. D													33.0	34.0	33.5	35.0	45.0	40.0

Table 10A (ii): Size Range of Rays (Disc Length) Except for Narcine spp, Rhychobatus australiae and R. laevis (Total Length) from February to July 2016. All Measurements in cm.
Table 10A (ii):

Species	Year/Month																	
	2016																	
	Feb			Mar			Apr			May			Jun			Jul		
Rays	Min	Max	Ave															
Dasyatis akajei	21.0	57.0	37.2	32.0	59.0	48.8	37.0	60.0	50.8	38.0	55.0	48.0	36.0	52.0	46.5	52.0	52.0	52.0
Dasyatis zugei	16.0	31.0	23.5	15.0	30.0	23.4	22.0	31.0	22.3	18.0	33.0	24.0	17.0	33.0	24.5	18.0	58.0	25.0
Himantura fai										92.0	116.0	105.8	57.0	141.0	108.0			
Himantura gerrardi	16.0	83.0	37.0	18.0	76.0	33.0	17.5	73.0	39.8	21.0	84.0	37.7	19.0	93.0	42.0	20.5	92.0	48.9
Himantura jenkinsii	26.5	26.5	26.5										94.0	96.0	94.7	59.0	59.0	59.0
Himantura pastinacoides	56.0	81.0	69.0	62.0	90.0	78.0	45.0	80.0	68.1	49.0	80.0	63.2	85.0	85.0	85.0	47.0	69.0	56.8
Himantura uarnak													110.0	110.0	110.0			
Himantura walga	15.0	28.0	20.9	15.0	26.5	20.5	15.0	25.0	20.8	16.5	25.0	20.6	14.0	26.5	20.1	16.0	27.0	21.1
Narcine sp.	33.0	37.0	35.0															
Neotrygon kuhlii	13.0	30.0	21.4	13.0	30.0	21.1	22.5	30.0	22.1	15.0	32.0	22.6	15.0	32.0	23.0	14.0	61.0	23.8
Rhynchobatus australiae	52.0	145.0	83.7	57.0	174.0	83.8	63.0	109.0	85.3	23.5	119.0	52.7	48.0	111.0	63.4	52.0	137.0	86.6
Rhynchobatus laevis										48.0	48.0	48.0	73.0	73.0	73.0			

Table 10B (i): Size Range of Sharks (Total Length) from August 2015 to January 2016. All Measurements in cm.

Species	Year/Month																	
	2015															2016		
	Aug			Sep			Oct			Nov			Dec			Jan		
Sharks	Min	Max	Av	Min	Max	Ave												
Atelomycterus cf. baliensis	45.5	52.0	48.8	43.0	53.5	49.6	44.0	44.0	44.0	50.0	50.0	50.0	46.0	49.0	47.7	48.0	53.0	51.3
Atelomycterus cf. erdmanni	48.0	54.0	50.4	37.0	55.0	49.0	34.0	54.0	46.6	43.0	56.0	49.3	43.0	54.0	50.6	37.0	57.0	48.6
Atelomycterus marmoratus	42.0	58.0	49.9	30.0	58.0	47.9	38.0	56.0	50.4	43.0	61.0	51.4	33.0	57.0	49.8	42.0	58.0	49.8
Carcharhinus brevipinna							74.5	89.0	80.7	77.0	87.0	82.2						
Carcharhinus leucas							89.0	89.0	89.0	78.0	155.0	116.5						
Carcharhinus limbatus	61.0	61.0	61.0															
Carcharhinus sorrah	73.0	83.0	78.9	83.0	142.0	112.5	61.0	95.0	84.4	93.0	97.0	95.7	88.0	96.0	92.0			
Chiloscyllium cf. hasseltii																61.5	63.0	62.3
Chiloscyllium hasseltii	42.0	82.0	62.3	18.5	86.0	59.6	40.0	93.0	62.0	46.0	79.0	61.8	46.0	81.0	62.2	44.0	86.0	61.0
Chiloscyllium indicum				47.0	56.0	52.3	49.0	55.5	52.0									
Chiloscylium punctatum	29.0	96.0	69.6	42.0	91.0	67.5	40.0	90.0	70.0	31.0	95.0	66.8	43.0	88.0	64.8	45.5	91.0	64.8
Chiloscyllium sp										48.0	48.0	48.0						
Galeocerdo cuvier							144.0	144.0	144.0	157.0	157.0	157.0						

Table 10B (ii): Size Range of Sharks (Total Length) from February to July 2016. All Measurements in cm.

Species	Year/Month																	
	2016																	
	Feb			Mar			Apr			May			Jun			Jul		
Sharks	Min	Max	Ave															
Atelomycterus cf. baliensis										52.0	52.0	52.0	54.0	54.0	54.0			
Atelomycterus cf. erdmanni	42.0	56.0	49.5	52.0	53.0	52.5	45.0	60.5	51.9	47.0	58.0	51.3	43.0	52.0	47.8	43.0	54.0	47.4
Atelomycterus marmoratus	41.0	59.0	50.4	40.0	56.0	48.9	39.0	55.0	49.5	25.0	71.0	50.9	40.0	57.0	50.2	40.0	61.0	51.2
Carcharhinus sorrah				46.0	106.0	64.5	52.0	135.0	60.0	50.0	104.0	60.8	44.0	143.0	66.9	62.0	128.0	81.2
Chiloscyllium hasseltii	41.0	77.0	60.1	45.0	79.0	60.2	47.0	81.0	61.8	42.0	86.0	61.5	39.0	82.0	63.0	42.0	91.0	63.3
Chiloscyllium indicum	46.5	51.0	49.2	52.0	54.0	53.0	52.0	52.0	52.0									
Chiloscyllium punctatum	37.0	89.0	63.1	42.0	90.0	68.4	43.0	92.0	68.9	39.0	88.0	68.4	39.0	90.0	68.8	45.0	95.0	70.4
Scoliodon laticaudus										41.0	41.0	41.0						

2.1.7 Usage and Marketing

Information on marketing at this landing site indicated that most sharks and rays meat were 'consumed locally and some were exported to Singapore. Ray's skin was exported to Thailand. The major markets were also in Perak, Johor, Penang and Kuala Lumpur. The price ($\mathrm{RM} / \mathrm{kg}$) varied according to species, size and season. The most expensive ray species Himantura gerrardi was sold at RM6 - RM21 followed by H. undulata (RM15-RM20) H. pastinacoides (RM12-RM15), Neotrygon kuhli (RM2 - RM12), Rhynchobatus australiae (RM7-RM12), R. laevis (RM8-RM10) and Rhinobatos cf. borneensis at RM4 - RM10/kg. The cheapest rays were electric rays (Narcine spp and Temera hardwickii) were sold at RM0.6 - RM0.7/kg to fishmeal processing plant. Fins from big size Rhynchobatus australiae were sold separately with the price ranging between RM100-300/kg based on sizes. In general, bigger sized rays were more expensive than the smaller ones. Ray's skin is processed before being sent to Thailand. Transport agent has been assigned to manage the ray's skin to be sent to Thailand's Border for processing in Thailand.

The most expensive sharks Carcharhinus leucas was sold at RM7 - RM40, Carcharhinus sorrah at RM6 - RM12 and Galeocerdo cuvier at RM8-10/kg. Market destinations for sharks and rays were similar. Some species such as Chiloscyllium hasseltii and C. punctatum were marketed to Penang where they are mainly used in traditional Indian cuisine. Atelomycterus marmoratus and A. erdmanni were also marketed to Penang. Fins of adult Carcharhinus leucas, C. sorrah, C. brevipinna and C. limbatus were sold separately, with the price ranging between RM70 - RM150 respectively based on sizes.

Normally the price at wet markets was about $20-50 \%$ higher than at landing site. The price was almost consistent for the whole year for all species but can fluctuate up to 50% when supply was limited and during festive seasons such as Chinese New Year and Hari Raya especially for species such as Himantura gerarrdi, H. walga, Dasyatis zugei, Neotrygon kuhlii, Dasyatis akajei and Rhynchobatus australiae for rays and, Carcharhinus sorrah and C. leucas for sharks. All sharks and rays were landed whole with fins. The details are shown in Table 11. Small, medium and big size category for each species is as shown in Appendix IV.

Table 11: Price of Sharks and Rays by Species and Market Destination at Larut Matang Landing Site. All Prices in RM per Kilogram. (Exchange rate: RM3.70 $=\mathbf{U S} \$ 1.00$)

Rays	Range Price RM/kg	Parts	Market Destination
Dasyatis akajei	$3-12$	Whole body	Local (Ipoh)
Dasyatis zugei	$2-5$	Whole body	Local (Sitiawan, Ipoh, Seri Manjung, Pantai Remis, Kuala Kangsar), Penang, Kuala Lumpur, Johor Bahru
Himantura fai	$2-6$	Whole body, skin	Kuala Lumpur and Butterworth; Skin to Thailand
Himantura gerrardi	$6-21$	Whole body, skin	Local (Ipoh, Sitiawan, Seri Manjung, Pantai Remis) Penang, Kuala Lumpur, Johor Bahru, Singapore; Skin to Thailand
Himantura jenkinsii	$3-12$	Whole body, skin	Local (Sitiawan, Seri Manjung), Bukit Mertajam, Singapore
Himantura pastinacoides	Whole body, skin	Local (Sitiawan); Skin export to Thailand	

Rays	Range Price RM/kg	Parts	Market Destination
Himantura undulata	15-20	Whole body, skin	Local (Sitiawan)
Himantura walga	1-8	Whole body	Local (Sitiawan, Ipoh, Seri Manjung, Pantai Remis), Penang, Kuala Lumpur, Johor Bahru
Narcine maculata	0.5-0.6	Whole body	Local (Fish meal factory)
Narcine sp.	0.5-0.6	Whole body	Local (Fish meal factory)
Neotrygon kuhlii	2-12	Whole body	Local (Seri Manjung, Pantai Remis, Sitiawan, Ipoh, Kuala Kangsar), Penang, Kuala Lumpur, Johor Bahru
Rhinobatos cf. borneensis	4-10	Whole body	Local (Sitiawan), Penang
Rhynchobatus australiae	7-12	Whole body, fins	Local (Sitiawan, Pantai Remis, Ipoh), Penang, Kuala Lumpur
Rhynchobatus laevis	8-10	Whole body	Local (Sitiawan), Kuala Lumpur
Temera hardwickii	0.5-0.6	Whole body	Local (Fish meal factory)
Narcine sp D	0.5-0.7	Whole body	Local (Fish meal factory)
Sharks			
Atelomycterus cf. baliensis	1-2	Whole body	Local (Ipoh, Pantai Remis, QL Surimi Factory at Hutan Melintang, Taiping, Lumut), Penang
Atelomycterus cf. erdmanni	1-3	Whole body	Local (Ipoh, Pantai Remis, QL Surimi Factory at Hutan Melintang, Taiping, Lumut), Penang
Atelomycterus marmoratus	1-5	Whole body	Local (QL Surimi Factory at Hutan Melintang, Pantai Remis, Taiping, Sitiawan), Penang, Ipoh
Carcharhinus brevipinna	8-10	Whole body,fins	Local (Pantai Remis), Penang
Carcharhinus leucas	7-40	Whole body, fins	Local (Sitiawan,Taiping)
Carcharhinus limbatus	10-15	Whole body, fins	Local (Sitiawan,Taiping)
Carcharhinus sorrah	6-12	Whole body, Fins	Local (QL Surimi Factory at Hutan Melintang, Pantai Remis), Penang, Ipoh, Kuala Lumpur
Chiloscyllium hasseltii	1-5	Whole body	Local (Sitiawan, Ipoh, Pantai Remis, QL Surimi Factory at Hutan Melintang), Penang, Kuala Lumpur
Chiloscyllium indicum	1-2	Whole body	Local (QL Surimi Factory at Hutan Melintang)
Chiloscyllium punctatum	1-5	Whole body	Local (Sitiawan, Pantai Remis, QL Surimi Factory at Hutan Melintang), Penang, Ipoh, Kuala Lumpur
Galeocerdo cuvier	8-10	Whole body, fins	Local (Sitiawan)
Scoliodon laticaudus	1-2	Whole body	Local (Sitiawan)

2.2 Manjung Utara

2.2.1 Landing Samples

A total of 308 landings were sampled during the study period. The highest landings by month was 30 in April 2016 followed by 29 in March and 28 in June 2016. The highest by gear type was 113 Zone C trawl net, followed by 72 of longline, 64 of drift net and 47 Zone B trawl net. The details are shown in Table 12.

Table 12: Number of Landings Sampled During the Study at Manjung Utara

Type of Gear	Year/Month												
	2015					2016							Grand Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Drift Net	3	3	2	3	3	1	2	10	10	8	8	11	64
Handline	1	2		1	2	1	2				2		11
Trawl Net B	6	5	6	4	3	4	2	4	4	3	3	3	47
Trawl Net C	9	9	11	11	10	8	15	9	8	7	8	8	113
Trawl Net C2				1									1
Longline	5	5	5	6	6	10	4	6	8	7	7	3	72
Total	24	24	24	26	24	24	25	29	30	25	28	25	308

2.2.2 Fishing Ground and Catch Composition by Gear Type

The main gear landing sharks at Manjung Utara was trawl net at $2,170 \mathrm{~kg}$ (39.7\%) followed by drift net at 414.5 kg (7.65) while longline which operated up to 30 nautical miles from the coastline landed the highest rays at $2,571 \mathrm{~kg}(47.1 \%)$ followed by drift net at 231 kg (4.2%) and handline at 66 kg (1.2%). Most trawlers operated beyond eight nautical miles from the coastline. Zone C trawl net landed the highest at $2,067 \mathrm{~kg}$ followed by Zone B at 67.5 kg and Zone C2 at 35.6 kg . The highest landing of rays by month was from longline at 918 kg (May 2015) while in December 2015 and November 2015 were 284 kg and 248 kg respectively. The highest landing of sharks by month came from Zone C trawl net in February 2016 and November 2015 at 323 kg and 240 kg respectively. The details are shown in Table 13.
Table 13: Weight of Sharks and Rays (in kg) Caught by Different Types of Gear

Type of Gear	Year/Month												
	2015					2016							Grand Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Ray													
Drift Net	3.8	7.4	7.8	17.2	23.4	1.4	0.1	126.1	6.7	22.3	9.9	4.8	230.9
Handline	4.9	23.8		4.3	8.5	3.6					20.7		65.7
Longline	108.5	185.6	156.1	248.5	284.1	160.8	49.6	66.3	115.8	917.9	190.0	87.5	2,570.6
Trawl Net B				4.0				1.3	1.0				6.4
Total Ray	117.2	216.7	163.9	274.0	315.9	165.8	49.7	193.7	123.5	940.2	220.6	92.3	2,873.6
Shark													
Drift Net	3.5	0.9	4.7				0.9	27.0	44.1	6.9	156.7	169.8	414.5
Handline					1.1		2.2						3.3
Longline							0.9						0.9
Trawl Net B	11.0	7.2	23.1	1.7	2.3	5.5	1.5	1.6	4.3	4.5	2.2	2.8	67.5
Trawl Net C	78.6	162.1	215.1	239.6	170.7	167.1	322.5	185.3	138.1	171.7	121.5	94.3	2,066.6
Trawl Net C2				35.6									35.6
Total Shark	93.1	170.1	242.9	276.9	174.1	172.6	328.0	213.8	186.5	183.1	280.5	266.9	2,588.3
Grand Total	210.3	386.8	406.8	550.8	490.0	338.3	377.7	407.6	310.0	1,123.3	501.1	359.2	5,461.9

2.2.3 Sharks and Rays Composition

A total of $469,906 \mathrm{~kg}$ of fish was landed from 308 landings during the study period. Rays and sharks made up $9,068 \mathrm{~kg}$ and $2,588 \mathrm{~kg}(2.0 \%$ and $0.6 \%)$ from the total landing respectively. Landings of bony fish was $458,249.60 \mathrm{~kg}$ or 97.4%. Average landings per month for sharks and rays were 216 kg and 756 kg respectively. The highest landing by month for rays was $1,400 \mathrm{~kg}$ in July 2016, followed by $1,327 \mathrm{~kg}$ in May 2016 and 921 kg in November 2015. For sharks, the highest landing was 328 kg in February 2016 followed by 280 kg in June 2016 and 277 kg in November 2015. In general, the landing of sharks and rays ranged between 0.3 -0.9% and $0.9-4.4 \%$ respectively from total landing. The details are shown in Table 14.

Table 14: Catch Composition of Sharks, Rays and Bony Fish by Month from 308 Landings at Manjung Utara, Perak. All Weights in Kilogram.

Year	Month	Weight of Rays	$\begin{gathered} \hline \% \\ \text { Ray } \\ \hline \end{gathered}$	Weight of Sharks	\% Sharks	Weight of Bony Fish	$\begin{gathered} \text { \% Bony } \\ \text { Fish } \end{gathered}$	Total Catch
2015	Aug	484.2	1.6	93.1	0.3	30,051.0	98.1	30,628.3
	Sep	750.9	2.0	170.1	0.5	36,795.5	97.5	37,716.4
	Oct	496.7	1.3	242.9	0.6	37,778.1	98.1	38,517.8
	Nov	920.5	1.8	276.9	0.5	50,894.1	97.7	52,091.5
	Dec	873.4	2.3	174.1	0.5	36,384.1	97.2	37,431.6
2016	Jan	599.3	1.9	172.6	0.5	30,989.3	97.6	31,761.2
	Feb	728.8	1.3	328.0	0.6	56,462.8	98.1	57,519.6
	Mar	482.7	1.1	213.8	0.5	43,693.4	98.4	44,390.0
	Apr	380.2	0.9	186.5	0.4	42,070.7	98.7	42,637.3
	May	1327.5	3.9	183.1	0.5	32,302.6	95.6	33,813.2
	Jun	623.3	2.0	280.5	0.9	30,745.3	97.1	31,649.1
	Jul	1400.1	4.4	266.9	0.8	30,082.8	94.8	31,749.8
Total		9067.7		2588.4		458,249.6		469905.6
Ave		755.6	2.0	215.7	0.6	38,187.5	97.4	39158.8

2.2.4 Sample Size

A total of 3,800 tails belonging to 2,498 rays and 1,302 sharks were sampled during the study period comprising 14 species of rays and six (6) species of sharks. The most common and abundant rays species were Himantura walga, H. gerrardi, Neotrygon kuhlii and Dasyatis zugei. Other rays species such as Dasyatis fluviorum, Himantura uarnacoides, Himantura uarnak, Rhinobatos cf. borneensis and Rhynchobatus australiae were rarely landed and only recorded between 1-4 months. The highest number of rays sampled by month was 280 tails in February 2016 followed by 277 tails in November and 212 tails in October 2015.

The most common and abundant sharks species were Chiloscyllium hasseltii, C. punctatum and Atelomycterus marmoratus. All these species were landed throughout the year. Carcharhinus sorrah was recorded in nine months. Other sharks species such as Stegostoma fasciatum and Chiloscyllium indicum only recorded in one and two months respectively during the study period. The highest number sampled by month was 175 tails in February 2016 followed by 127 tails in November and 126 tails in October 2015.The details are as shown in Table 15.
Table 15: Sample Size of Sharks and Rays by Species

Species	Year/Month												
	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Dasyatis fluviorum	5	1	1	2	3	1							13
Dasyatis zugei	58	34	30	38	23	34	50	26	34	25	32	36	420
Gymnura poecilura	1	3	3	2	3			2	2	2	2	1	21
Himantura fai												4	4
Himantura gerrardi	43	59	63	85	66	61	82	46	49	52	51	40	697
Himantura jenkinsii				1									1
Himantura pastinacoides								3	1	16	8	3	31
Himantura uarnacoides								2					2
Himantura uarnak								1				1	2
Himantura walga	14	44	64	86	61	51	66	85	81	63	45	58	718
Neotrygon kuhlii	57	58	51	62	50	47	78	37	25	36	38	41	580
Rhinobatos cf. borneensis							2						2
Rhynchobatus australiae				1	2		2	1					6
Taeniurops meyeni												1	1
Total rays	178	199	212	277	208	194	280	203	192	194	176	185	2,498
Atelomycterus marmoratus	17	9	10	16	3	11	19	2	9	11	5	14	126
Carcharhinus sorrah	7	1	3				1	2	20	17	33	18	102
Chiloscyllium hasseltii	52	52	57	59	49	49	81	49	38	34	28	33	581
Chiloscyllium indicum					2				3				5
Chiloscyllium punctatum	26	38	56	52	41	35	73	45	36	33	26	26	487
Stegostoma fasciatum							1						1
Total sharks	102	100	126	127	95	95	175	98	106	95	92	91	1,302
Grand total	280	299	338	404	303	289	455	301	298	289	268	276	3,800

2.2.5 Weight of Sharks and Rays by Species

A total of $11,656 \mathrm{~kg}$ was landed from 308 landings comprising $9,068 \mathrm{~kg}$ of rays and $2,588 \mathrm{~kg}$ of sharks. For rays, the highest landing by weight was from species Himantura gerrardi amounting to $3,818 \mathrm{~kg}$ followed by $2,660 \mathrm{~kg}$ of Neotrygon kuhlii, 907 kg of Himantura pastinacoides and 621 kg of Himantura walga. The highest landing by month for Himantura gerrardi was 596 kg in July 2016, followed by 531 kg in November and 380 kg in Disember 2015. For Neotrygon kuhlii, the highest landing was 363 kg in September 2015 followed by 348 kg in February and 290 kg in January 2016. For Himantura pastinacoides, the highest landing was 825 kg in May followed by 46 kg in June and 19 kg in July 2016. The highest landing for by month for Himantura walga was 100 kg in April 2016, followed by 93 kg in November 2015 and 81 kg in March 2016. Other important species were Himantura fai (312 kg), Dasyatis zugei (289 kg), Himantura uarnak (156 kg) and Taeniurops meyeni (119 kg). Landing of other species was less than 100 kg .

The highest landing of shark species were $1,035 \mathrm{~kg}$ of Chiloscyllium punctatum followed by 860 kg for Chiloscyllium hasseltii and 630 kg for Carcharhinus sorrah. The highest landing by month for Chiloscyllium punctatum was 170 kg in February 2016 followed by 138 kg in November and 128 kg in October 2015. For Chiloscyllium hasseltii, the highest landing was 132 kg in November 2015 followed by 114 kg in February 2016 and 107 kg in December 2015. Landing for Carcharhinus sorrah was the highest in June (209 kg) followed by 197 kg in July and 76 kg in April 2016. Landing of other species was less than 50 kg . The details are shown in Table 16.
Table 16: Weight of Sharks and Rays (in Kg) by Species from 308 landings at Manjung Utara

Species	Year/Month												
	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Dasyatis fluviorum	27.4	10.2	7.8	3.0	18.4	3.6							70.3
Dasyatis zugei	28.6	11.5	12.9	17.5	50.8	46.8	28.2	15.9	15.8	30.4	13.3	17.2	288.9
Gymmura poecilura	3.8	7.4	2.1	6.5	4.9			2.6	2.6	6.0	1.5	1.7	39.1
Himantura fai												312.1	312.1
Himantura gerrardi	227.1	331.3	264.6	530.7	379.9	242.1	279.0	185.0	177.2	266.5	338.2	596.0	3,817.6
Himantura jenkinsii				5.8									5.8
Himantura pastinacoides								17.6		824.6	45.7	18.8	906.6
Himantura uarnacoides								11.6					11.6
Himantura uarnak								72.0				83.6	155.6
Himantura walga	6.0	27.6	50.1	92.7	63.2	16.8	69.9	81.6	100.1	53.1	29.2	31.0	621.2
Neotrygon kuhlii	191.4	363.0	159.3	263.8	330.4	290.0	348.2	66.4	84.4	146.9	195.4	220.8	2,659.9
Rhinobatos cf. borneensis							1.3						1.3
Rhynchobatus australiae				0.6	25.8		2.3	30.0					58.7
Taeniurops meyeni												119.0	119.0
Total Weight Rays	484.2	750.9	496.7	920.5	873.4	599.3	728.8	482.7	380.2	1,327.5	623.3	1,400.1	9,067.6
Atelomycterus marmoratus	6.0	3.1	3.9	6.6	0.8	3.9	7.1	0.9	3.3	4.0	1.8	4.4	45.9
Carcharhinus sorrah	13.4	0.9	57.2				19.8	1.6	76.0	54.7	209.3	197.3	630.1
Chiloscyllium hasseltii	37.5	76.7	54.0	132.2	107.1	80.1	114.5	86.8	43.1	71.4	28.5	27.9	859.6
Chiloscyllium indicum					0.9				0.3				1.2
Chiloscyllium punctatum	36.2	89.4	127.8	138.1	65.3	88.6	170.2	124.6	63.9	53.0	40.9	37.3	1,035.0
Stegostoma fasciatum							16.5						16.5
Total Weight Sharks	93.1	170.1	242.9	276.9	174.1	172.6	328.0	213.8	186.5	183.1	280.5	266.9	2,588.3
Grand Total	577.3	921.0	739.6	1,197.4	1,047.5	771.9	1,056.8	696.6	566.7	1,510.6	903.8	1,667.0	11,656.0

2.2.6 Size Range of Sharks and Rays

In general from August 2015 to January 2016, both mature and immature rays species were sampled. Most rays species were mature except for Himantura gerrardi, H. jenkinsii, Rhynchobatus australiae and Gymnura poecilura. The average size of Himantura gerrardi ranged between $35.4-39.3 \mathrm{~cm}$ disc length but no adult sized specimens were available because immediately removed by middlemen upon being landed. First maturing size for Himantura gerrardi is about 59.0 cm and for Gymnura poecilura about 45.0 cm disc length. However, almost all of Dasyatis zugei, Neotrygon kuhlii, Dasyatis fluviorum and Rhinobatos cf. borneensis were mature. Most shark species landed were mature except for Carcharhinus sorrah. First maturing size for Carcharhinus sorrah is 90 cm total length. Size range of all sharks and rays species from August to December 2015 are shown in Table 17A (i) and 17A (ii).

Most of rays species landed from January to July 2016 were mature except for Himantura gerrardi, Gymnura poecilura, Rhynchobatus australiae and Carcharhinus sorrah. Similar to the August to December 2015 study duration, almost all of these species were juvenile. Others species such as Dasyatis zugei, Dasyatis fluviorum, Neotrygon kuhlii, Himantura walga and Rhinobatos cf. borneensis were matured. Most shark species were mature except for Carcharhinus sorah. Size range of all sharks and rays species from January to July 2016 are shown in Table 17B (i) and 17B (ii).
Table 17A (i): Size Range of Rays (Disc Length) Except for Rhynchobatus australiae (Total Length) from August 2015 to January 2016.

Species	Year/Month																	
	2015															2016		
	Aug			Sep			Oct			Nov			Dec			Jan		
Rays	Min	Max	Ave															
Dasyatis fluviorum	24.0	73.0	51.4	58.0	58.0	58.0	61.0	61.0	61.0	30.0	32.0	31.0	37.0	67.0	52.3	45.0	45.0	45.0
Dasyatis zugei	11.0	29.5	22.3	14.5	30.0	22.4	16.0	31.5	23.0	16.5	31.0	22.6	16.0	29.0	23.2	16.0	29.0	23.1
Gymnura poecilura	32.0	32.0	32.0	30.0	32.0	31.3	11.5	23.0	17.5	23.0	41.0	32.0	19.0	27.0	22.7			
Himantura gerrardi	15.0	79.0	37.7	15.0	90.0	38.5	16.0	74.0	39.3	16.0	114.0	38.5	17.0	89.0	35.4	19.0	75.0	38.6
Himantura jenkinsii										48.0	48.0	48.0						
Himantura walga	16.0	23.0	19.9	16.0	24.0	20.3	15.0	25.0	19.9	11.0	26.0	19.6	14.0	30.0	19.9	14.0	26.0	19.8
Neotrygon kuhlii	12.0	29.0	21.2	13.0	30.0	22.1	15.0	30.0	22.6	14.0	31.0	21.9	12.0	30.0	20.8	13.0	28.0	22
Rhynchobatus australiae										48	48	48	64	114	89			

Table 17A (ii): Size Range of Rays (Disc Length) Except for Rhinobatos cf. borneensis and Rhynchobatus australiae (Total Length) from February to July 2016. All Measurements in cm.

Species	Year/Month																	
	2016																	
	Feb			Mar			Apr			May			Jun			July		
Rays	Min	Max	Ave															
Dasyatis zugei	19.0	31.0	23.8	19.0	34.0	26.9	15.0	31.0	22.8	15.0	28.0	21.3	17.0	29.0	22.4	15.0	29.0	22.4
Gymnura poecilura				28.0	29.0	28.5	18.0	22.0	20.0	28.0	36.0	32.0	23.0	24.0	23.5	35.0	35.0	35.0
Himantura fai																110.0	135.0	123.0
Himantura gerrardi	16.0	67.0	33.8	14.0	104.0	34.6	17.0	78.0	37.1	17.0	102.0	37.1	19.0	72.0	44.3	17.0	84.0	49.0
Himantura pastinacoides				44.0	61.5	53.5	42.0	42.0	42.0	32.0	72.0	50.0	30.0	73.0	48.1	38.0	70.0	58.5
Himantura uarnacoides				45.0	89.0	67.0												
Himantura uarnak				138.0	138.0	138.0										87.0	87.0	87.0
Himantura walga	16.5	24.0	20.9	15.0	25.0	19.7	16.0	24.0	19.8	14.5	23.0	19.3	15.0	23.0	19.1	14.0	24.5	19.4
Neotrygon kuhlii	16.0	32.0	22.1	16.0	29.5	22.5	17.0	29.0	22.3	16.0	26.0	21.4	16.0	31.5	21.6	15.0	28.0	20.7
Rhinobatos cf. borneensis	60.0	62.5	61.3															
Rhynchobatus australiae	43.0	71.0	57.0	174.0	174.0	174.0												
Taeniurops meyeni																117.0	117.0	117.0

Table 17B (i): Size Range of Sharks (Total Length) from August 2015 to January 2016. All Measurements in cm.

Species	Year/Month																	
	2015															2016		
	Aug			Sep			Oct			Nov			Dec			Jan		
Sharks	Min	Max	Av															
Atelomycterus marmoratus	37.0	54.0	46.1	43.0	53.0	45.9	32.0	54.0	45.1	40.0	55.0	48.3	38.0	41.0	39.7	35.0	55.0	45.0
Carcharhinus sorrah	43.0	87.0	65.1	45.0	45.0	45.0	88.0	148.0	113.3									
Chiloscyllium hasseltii	27.0	78.0	49.6	25.0	73.0	54.7	26.0	83.0	52.6	38.0	89.0	58.9	36.0	77.0	58.5	34.0	78.0	56.6
Chiloscyllium indicum													45.0	46.0	45.5			
Chiloscyllium punctatum	27.0	84.0	63.9	45.0	93.0	69.3	47.0	89.0	69.6	44.0	89.0	66.3	43.0	79.0	62.0	44.0	84.0	66.7

Table 17B (ii): Size Range of Sharks (Total Length) from February to July 2016. All Measurements in cm.

Species	Year/Month																				
	2016																				
	Feb			Mar			Apr			May			Jun			Jul			Aug		
Sharks	Min	Max	Av																		
Atelomycterus marmoratus	35.0	55.0	45.0	40.0	67.0	50.3	52.0	53.0	52.5	38.0	59.0	48.8	41.0	52.0	45.5	35.0	51.0	45.7	34.0	60.0	44.5
Carcharhinus sorrah				150.0	150.0	150.0	50.0	53.0	51.5	50.0	139.0	64.8	58.0	84.0	69.2	58.0	98.0	74.0	63.0	97.0	77.6
Chiloscyllium hasseltii	34.0	78.0	56.6	42.0	83.0	61.5	43.0	81.0	64.0	44.0	81.0	63.7	49.0	80.0	61.8	35.0	81.0	60.3	37.0	76.0	54.5
Chiloscyllium indicum										45.0	50.5	47.5									
Chiloscyllium punctatum	44.0	84.0	66.7	40.0	88.0	65.1	49.0	89.0	72.2	56.0	83.5	70.3	52.0	85.0	69.8	49.0	93.0	70.2	41.0	88.0	64.5
Stegostoma fasciatum				163.0	163.0	163.0															

2.2.7 Usage and Marketing

Information on marketing collected at this landing site indicated that most sharks and rays were consumed locally and some were exported to Singapore. The major markets were wholesale market in Kuala Lumpur, and other major towns in Perak such as Taiping, Sitiawan and Ipoh. Skins of some rays species was exported to Thailand. The price ($\mathrm{RM} / \mathrm{kg}$) varied according to species, size and season. The most expensive ray species such as Himantura gerrardi was sold at RM6 - RM18 followed by Neotrygon kuhlii (RM1 - RM13) and Rhynchobatus australiae at RM4-RM10. The lowest price of rays species were Dasyatis zugei sold at (RM1 - RM5) and Rhinobatos cf. borneensis at RM3 - RM5. Ray's skin is processed before being sent to Thailand. Transport agent has been assigned to manage the ray's skin to be sent to Thailand's Border for processing in Thailand.

In general, bigger sized rays and sharks were more expensive than smaller ones. Small size sharks such as Chiloscyllium spp with total length of less than 20 cm were sold locally at RM1-1.5/kg for local delicacies such as fish ball and Indian curry. Carcharhinus sorrah was sold at RM5 - RM9 and Stegostoma fasciatum at RM8 - RM9. Other sharks species such as Chiloscyllium hasselti, C. indicum and C. punctatum were sold at RM1-RM4. Market destinations for sharks and rays were similar.

The price was almost consistent for the whole year for all species but sometimes fluctuate up to 50% when supply was limited and during festive seasons such as Chinese New Year and Hari Raya; especially for Himantura gerarrdi, H. pastinacoides, H. walga, Dasyatis zugei, Gymnura poecilura, Neotrygon kuhlii, Rhynchobatus australiae and Carcharhinus sorrah. All sharks and rays were landed whole with fins. The details are shown in Table 18. Small, medium and big size category for each species is as shown in Appendix IV.

Table 18: Price of Sharks and Rays by Species and Market Destination at Manjung Utara. All Prices in RM per Kilogram. (Exchange rate: RM3.70= US\$ 1.00)

	Range Price RM/kg	Parts	Market Destination
Rays			
Dasyatis fluviorum	$5-12$	Whole body	Local (Manjung, Ipoh, Sitiawan, Taiping), Singapore
Dasyatis zugei	$1-5$	Whole body	Local (Manjung, Ipoh, Taiping), Kuala Lumpur, Singapore
Gymnura poecilura	$1-9$	Whole body	Local (Manjung, Ipoh, Taiping), Kuala Lumpur, Singapore
Himantura fai	$8-13$	Whole body, skin	Local (Manjung, Taiping), Kuala Lumpur; Skin export to Thailand
Himantura gerrardi	$6-18$	Whole body, skin	Local (Manjung, Ipoh, Taiping), Kuala Lumpur, Singapore; Skin export to Thailand
Himantura jenkinsii	$8-10$	Whole body	Local (Manjung), Singapore; Skin export to Thailand
Himantura pastinacoides	$5-15$	Whole body, skin	Local (Manjung, Taiping), Kuala Lumpur; Skin export to Thailand
Himantura uarnacoides	$5-6$	Whole body, skin	Local (Manjung); Skin export to Thailand
Himantura uarnak	$5-15$	Whole body, skin	Local (Manjung); Skin export to Thailand
Himantura walga	$1-5$	Whole body	Local (Manjung, Ipoh, Taiping), Kuala Lumpur, Singapore

	Range Price RM/kg	Parts	Market Destination
Neotrygon kuhlii	$1-13$	Whole body	Local (Manjung, Taiping, Ipoh), Kuala Lumpur, Singapore
Rhinobatos cf. borneensis	$3-5$	Whole body	Local (Manjung)
Rhynchobatus australiae	$4-10$	Whole body, fins	Local (Manjung, Ipoh, Taiping)
Taeniurops meyeni	$8-15$	Whole body	Local (Manjung, Taiping), Kuala Lumpur
Sharks			
Atelomycterus marmoratus	$1-2$	Whole body	Local (Manjung, Ipoh, Taiping), Kuala Lumpur
Carcharhinus sorrah	$5-9$	Whole body, fins	Local (Manjung, Taiping), Kuala Lumpur
Chiloscyllium hasseltii	$1-4$	Whole body	Local (Manjung, Taiping), Kuala Lumpur
Chiloscyllium indicum	$2-3$	Whole body	Local (Manjung)
Chiloscyllium punctatum	$1-4$	Whole body	Local (Manjung, Ipoh, Taiping), Kuala Lumpur
Stegostoma fasciatum	$8-9$	Whole body	Local (Manjung)

2.2.8 Fishing Effort and CPUE (Catch per Unit Effort)

Monthly fishing efforts (days at operation and total number of operation during the cruise) of the sampled vessels are summarized in Table 19 and Table 20.

Table 19: Days at Operation by Gear Sampled during the study period in Perak (Larut Matang and Manjung Utara)

Type Gear	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Drift Net	5	3	3	5	4	1	2	11	10	8	9	12	73
Handline		2		1	2	1	2				2		10
Longline	7	6	13	9	8	8	8	7	15	8	9	7	105
Purse Seine C2		2											2
Trawl Net B	8	11	16	17	8	10	9	6	13	9	5	5	117
Trawl Net C	167	170	190	178	191	196	192	181	149	168	168	166	2,116
Trawl Net C2	20	6	6	13	12		11			6	12	6	92

Table 20: Total Number of Operation by Gear Sampled during the study period in Perak (Larut Matang and Manjung Utara)

Type Gear	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Drift Net	29	24	27	48	40	13	26	124	70	85	53	94	633
Handline		22		5	13	5	12				14		71
Longline	35	35	54	50	52	62	27	23	37	31	47	26	479
Purse Seine C2		6											6
Trawl Net B	93	77	94	69	57	73	57	50	56	27	39	35	727
Trawl Net C	404	399	431	412	425	483	388	435	338	423	417	412	4,967
Trawl Net C2	60	18	18	24	36		33			18	36	18	261

Table 21 shows the top 10 catch per unit effort (CPUE) rays species captured by trawl net Zone C, combined for Larut Matang and Manjung Utara. Himantura gerrardi topped the list with, 3.43 kg /days or $1.46 \mathrm{~kg} /$ hauls followed by Neotrygon kuhlii at $0.74 \mathrm{~kg} /$ days or 0.32 kg /hauls and Himantura fai at $0.38 \mathrm{~kg} /$ days or $0.16 \mathrm{~kg} / \mathrm{hauls}$.

The top three catch per unit effort (CPUE) for sharks were Chiloscyllium punctatum on the top, followed by Chiloscyllium hasseltii and Carcharhinus sorrah. In terms of CPUE (kg/days), Chiloscyllium punctatum recorded 1.00, C. hasseltii at 0.89 and Carcharhinus sorrah at 0.41 . The top 10 CPUE of rays and sharks species captured by trawl net Zone C are shown in Table 21 and Table 22.

Table 21: Top 10 CPUE Rays Species Captured by Trawl Net C during the study period in Perak (Larut Matang and Manjung Utara) (kg/Fishing Effort)

	Scientific Name	Total weight (kg) by Species	CPUE (kg/day)	CPUE (kg/haul)
1	Himantura gerrardi	$7,253.1$	3.43	1.46
2	Neotrygon kuhlii	$1,565.7$	0.74	0.32
3	Himantura fai	795.9	0.38	0.16
4	Himantura pastinacoides	777.8	0.37	0.16
5	Dasyatis zugei	555.9	0.26	0.11
6	Himantura walga	555.9	0.26	0.11
7	Rhynchobatus australiae	450.1	0.21	0.09
8	Dasyatis akajei	328.7	0.16	0.07
9	Himantura jenkinsii	285.2	0.13	0.06
10	Himantura uarnak	211.6	0.10	0.04

Table 22: Top 10 CPUE Sharks Species Captured by Trawl Net C during the study period in Perak (Larut Matang and Manjung Utara) (kg/Fishing Effort)

	Scientific Name	Total weight (kg) by Species	CPUE (kg/day)	CPUE (kg/haul)
1	Chiloscyllium punctatum	$2,122.4$	1.00	0.43
2	Chiloscyllium hasseltii	$1,891.2$	0.89	0.38
3	Carcharhinus sorrah	867.1	0.41	0.17
4	Atelomycterus marmoratus	254.6	0.12	0.05
5	Atelomycterus cf. erdmanni	58.9	0.03	0.01
6	Carcharhinus leucas	38.0	0.02	0.01
7	Galeocerdo cuvier	32.7	0.02	0.01
8	Carcharhinus brevipinna	26.8	0.01	0.01
9	Stegostoma fasciatum	16.5	0.01	0.00
10	Atelomycterus cf. baliensis	10.7	0.01	0.00

2.3 Kota Kinabalu

2.3.1 Landing Samples

A total of 274 landings were sampled during the study period with average of 23 samples a month. The samples were catches from trawl nets, that operated mainly in Zone 3 with 137 vessels, followed by 113 vessels in Zone 4 and only 13 and 11 vessels in Zone 5 and Zone 2 respectively. The details are shown in Table 23.

Table 23: Number of Landings by Gear Sampled During Study at Kota Kinabalu (SAFMA Jetty)

Type of Gear	Year/Month												
	2015					2016							Grand Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Trawl Net Zone 2	1	2			3					2	1	2	11
Trawl Net Zone 3	16	10	13	13	10	9	10	10	11	11	12	12	137
Trawl Net Zone 4	6	8	7	10	7	10	12	14	11	11	9	8	113
Trawl Net Zone 5	1				3	4	1		2		2		13
TOTAL	24	20	20	23	23	23	23	24	24	24	24	22	274

2.3.2 Fishing Ground and Catch Composition by Gear Type

The total catch of trawl nets that sampled were $11,730 \mathrm{~kg}$ comprising $7,243 \mathrm{~kg}$ of rays (62%) and 4487 kg of sharks, which is only 38% of the combined catches. All trawlers operated beyond three nm (nautical miles) from coastline, and mainly between $12-30 \mathrm{~nm}$ from the coastline. Only vessels in Zone 5 operates beyond 30 nm from the coastline. A total of $3,398 \mathrm{~kg}$ of rays was landed by Zone 3 trawl nets followed by Zone 4 trawl nets at $3,388 \mathrm{~kg}$. As for sharks, Zone 3 trawl nets also landed the highest catch, with $2,235 \mathrm{~kg}$ followed by Zone 4 trawl nets at $1,841 \mathrm{~kg}$. The highest landing of rays by month was from Zone 3 trawl nets at 611 kg in August 2015 while 484 kg and 440 kg were both from Zone 4 in August 2015 and January 2016 respectively. For sharks, the highest and second highest landing by month came from Zone 3 trawl nets at 396 kg and 307 kg in August and October 2015 respectively and followed by Zone 4 trawl nets at 304 kg in January 2016. The details are shown in Table 24.
Table 24: Weight of Sharks and Rays (in Kg) Caught by Different Types of Gear at Kota Kinabalu (SAFMA Jetty)

Type of Gear	Year/Month												
	2015					2016							
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Grand Total
Ray													
Trawl Net Zone 2	5.5	8.6			95.4					17.4	34.6	19.9	181.4
Trawl Net Zone 3	610.7	117.1	188.2	277.5	275.7	293.3	203.5	258.4	296.7	191.0	418.3	268.0	3,398.3
Trawl Net Zone 4	484.4	176.7	80.6	356.6	139.8	439.7	399.8	397.7	206.3	300.9	237.6	169.0	3,388.8
Trawl Net Zone 5	56.1				43.8	71.1	24.9		55.0		23.4		274.2
Total Ray	1156.7	302.4	268.8	634.1	554.7	804.0	628.1	656.1	557.9	509.2	713.9	456.9	7,242.7
Shark													
Trawl Net Zone 2	20.4	37.8			40.4					37.0	1.0	49.8	186.4
Trawl Net Zone 3	395.7	161.5	307.1	228.9	244.3	151.7	121.5	128.8	114.4	127.5	128.7	125.3	2,235.3
Trawl Net Zone 4	67.6	151.6	102.6	133.6	100.6	304.1	185.4	233.0	110.9	94.4	145.3	212.3	1,841.3
Trawl Net Zone 5	22.4				56.5	80.3	6.2		38.8		20.1		224.2
Total Shark	506.1	350.9	409.7	362.5	441.8	536.2	313.1	361.7	264.1	258.9	295.1	387.3	4,487.2
Grand Total	1,662.8	653.3	678.5	996.6	996.5	1,340.2	941.2	1,017.8	822.0	768.1	1,009.0	844.2	11,729.9

2.3.3 Sharks and Rays Composition

A total of $1,856,510 \mathrm{~kg}$ of fish was landed from 274 landings during the study period. Rays and sharks made up $7,243 \mathrm{~kg}$ and $4,487 \mathrm{~kg}(0.4 \%$ and $0.2 \%)$ from the total landing respectively. Landings of bony fish was $1,844,779.90 \mathrm{~kg}$ or 99.4%. Average landings per month for sharks and rays were 374 kg and 604 kg respectively. The highest landing by month for rays was $1,157 \mathrm{~kg}$ in August 2015, followed by 804 kg in January and 714 kg in June 2016. The highest landing for sharks was 536 kg in January 2016, followed by 506 kg in August and 442 kg in December 2015. In general, the landing of sharks and rays ranged between $0.2-0.3 \%$ and $0.2-0.7 \%$ respectively from total landing. The details are shown in Table 25.

Table 25: Catch Composition of Sharks, Rays and Bony Fish by Month from 274 Landings at Kota Kinabalu (SAFMA Jetty). All Weight in Kilogram.

Year	Month	Weight of Ray	$\begin{gathered} \text { \% } \\ \text { Ray } \end{gathered}$	Weight of Shark	$\%$ Shark	Weight of Bony Fish	$\begin{gathered} \% \\ \text { Bony Fish } \end{gathered}$	Total Catch
2015	Aug	1,156.7	0.7	506.1	0.3	161,280.0	99.0	162,942.8
	Sept	302.4	0.2	350.9	0.2	155,500.0	99.6	156,153.3
	Oct	268.8	0.2	409.7	0.3	141,200.0	99.5	141,878.5
	Nov	634.1	0.4	362.5	0.2	158,100.0	99.4	159,096.6
	Dec	554.7	0.3	441.8	0.2	180,800.0	99.5	181,796.5
2016	Jan	804.0	0.4	536.2	0.3	189,800.0	99.3	191,140.2
	Feb	628.1	0.4	313.1	0.2	160,700.0	99.4	161,641.2
	Mar	656.1	0.5	361.7	0.3	134,173.0	99.2	135,190.8
	Apr	557.9	0.4	264.1	0.2	138,500.0	99.4	139,322.0
	May	509.2	0.4	258.9	0.2	132,547.9	99.4	133,316.0
	Jun	713.9	0.5	295.1	0.2	155,527.0	99.3	156,536.0
	Jul	456.9	0.3	387.3	0.3	136,652.0	99.4	137,496.2
Total		7,242.7		4,487.2		1,844,779.9		1,856,509.8
Ave		603.6	0.4	373.9	0.2	153,731.7	99.4	154,709.2

2.3.4 Sample Size

A total of 4,771 tails belonging to 2,546 rays and 2,225 sharks were sampled during the study period comprising 20 species of rays and 17 species of sharks. The most common and abundant rays species were Neotrygon kuhlii followed by Himantura gerrardi and Dasyatis zugei. All these species were landed throughout the year. Other common rays species were Rhinobatos borneensis Gymnura poecilura, Rhynchobatus australiae, and Pastinachus gracilicaudus. These species were recorded between 8-11 months. Dasyatis parvonigra and Himantura jenkinsii were recorded in six (6) nd four (4) months respectively. Other species such as Gymnura japonica, H. uarnak, Aetomylaeus vespertilio, Himantura fai, H. leoparda, H. uarnacoides, Mobula japanica, Rhinoptera jayakari, Taeniura lymma and Taeniurops meyeni, were only landed between 1-5 months. The highest number of rays sampled by month was 331 tails in January 2016 followed by 318 tails in November and 272 tails in December 2015.

The most common and abundant sharks species were Chiloscyllium punctatum and C. plagiosum. All these species were landed throughout the year. Other common sharks species were Carcharhinus sorrah, Atelomycterus marmoratus, Sphyrna lewini and Hemipristis elongata. All these these species were landed between 10-12 months. Other species such as

Hemigaleus microstoma, Heterodontus zebra and Mustelus manazo were landed in four months; Alopias pelagicus and Loxodon macrohinus in three (3) months, while Carcharhinus brevipinna, Carcharhinus sealei, Halaelurus buergeri, Orectolobus leptolineatus, Squatina tergocellatoides and Stegostoma fasciatum were only landed between 1-2 months. The highest number of sharks sampled by month was 257 tails in January 2016, followed by 253 tails in September and 249 tails in December 2015. The details are as shown in Table 26.

Table 26: Sample Size of Sharks and Rays by Species at Kota Kinabalu (SAFMA Jetty)

Species	Year/Month												
	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Aetobatus ocellatus	2					1		1			1		5
Aetomylaeus vespertilio		1											1
Dasyatis parvonigra				17	14	2	2			4		8	47
Dasyatis zugei	24	13	26	47	79	91	15	23	60	60	39	69	546
Gymmura japonica	1	1		5				1		5			13
Gymmura poecilura	4	3	2	6	1	1	4		8	23	3	8	63
Himantura fai	2												2
Himantura gerrardi	57	44	30	82	47	77	49	43	60	29	16	37	571
Himantura jenkinsii	1			1	3			2					7
Himantura leoparda	3											1	4
Himantura uarnacoides	5												5
Himantura uarnak	I					2				2			5
Mobula japanica	1												1
Neotrygon kuhlii	47	61	50	139	112	128	86	75	81	96	101	55	1,031
Pastinachus gracilicaudus	10		2	2	5	13	2		1		5		40
Rhinobatos borneensis	19	11	19	6	4	13	8	28	8	8		2	126
Rhinoptera jayakari	5						2						7
Rhynchobatus australiae		5	3	13	7	3	6	1	6	1	7	15	67
Taeniura lymma		1	3										4
Taeniurops meyeni		1											1
Total Rays	182	141	135	318	272	331	174	174	224	228	172	195	2,546
Alopias pelagicus	1					4		2					7
Atelomycterus marmoratus	9	22	29	22	29	28	10	5		9	24	15	202
Carcharhinus brevipinna	2	8											10
Carcharhinus sealei	2												2
Carcharhinus sorrah	12	7	7	3	6	3	2	2	9	24	23	23	121
Chiloscyllium plagiosum	82	126	94	71	68	49	32	33	33	45	40	49	722
Chiloscyllium punctatum	79	72	91	84	120	152	94	58	51	63	63	30	957
Halaelurus buergeri	1				1								2
Hemigaleus microstoma	1					2				1		2	6
Hemipristis elongata	2	1	3	2	8	8	1	4	3	3			35
Heterodontus zebra	2	2	3	1									8
Loxodon macrorhinus		7		11						6			24
Mustelus manazo					5	6		1		2			14
Orectolobus leptolineatus		1											1
Sphyrna lewini	8	7	5	18	12	5	7		11	10	14	15	112
Squatina tergocellatoides	1												1
Stegostoma fasciatum												1	1
Total Sharks	202	253	232	212	249	257	146	105	107	163	164	135	2,225
Grand Total	384	394	367	530	521	588	320	279	331	391	336	330	4,771

2.3.5 Weight of Sharks and Rays by Species

A total of $11,711 \mathrm{~kg}$ was landed from 274 landings comprising $7,224 \mathrm{~kg}$ rays and $4,487 \mathrm{~kg}$ sharks. For rays, the highest landing by weight was from species Neotrygon kuhlii amounting to $2,733 \mathrm{~kg}$, followed by Himantura gerrardi $1,717 \mathrm{~kg}, 952 \mathrm{~kg}$ for Dasyatis zugei and 465 kg for Pastinachus gracilicaudus. The highest landing by month for Neotrygon kuhlii was 334 kg in February, followed by 332 kg in June 2016 and 312 kg in November 2015. For

Himantura gerrardi, the highest landing was 298 kg in August 2015, followed by 204 kg in June and 195 kg in March 2016. For Dasyatis zugei, the highest landing was 166 kg in January followed by 127 kg in May 2016 and 120 kg in December 2015. The highest landing for Pastinachus gracilicaudus was in August $2015(137 \mathrm{~kg})$ followed by 116 kg in January and 62 kg in June 2016. Weigh of others species such as Rhinoptera jayakari was 281 kg , Rhinobatus borneensis (177 kg), Dasyatis parvonigra (165 kg), Gymnura poecilura (136 kg), Rhynchobatus australiae (149 kg) and Himantura leoparda (112 kg). Weight of other species was below 100 kg .

The highest landing of shark species were $2,201 \mathrm{~kg}$ for Chiloscyllium punctatum followed by $1,017 \mathrm{~kg}$ for C. plagiosum, 469 kg for Carcharhinus sorrah, 266 kg for Sphyrna lewini, 162 kg for Alopias pelagicus, and 147 kg for Atelomycterus marmoratus. The highest landing by month for Chiloscyllium punctatum was 292 kg in January 2016, followed by 250 kg in December 2015 and March 2016 respectively. For Chilosycyllium plagiosum, the highest landing was 197 kg in August followed by 132 kg in October and 127 kg in September 2015. The highest landing for Carcharhinus sorrah was 88 kg in June followed by 84 kg in July 2016 and 76 kg in August 2015. The highest landing for Sphyrna lewini was in July 2016 (83 kg), Alopias pelagicus in January 2016 and for Atelomycterus marmoratus in January 2016 $(25 \mathrm{~kg})$. Weight of other species was below 50 kg . The details are shown in Table 27.

Species	Year/Month												
	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Aetobatus ocellatus	2.20					18.20		29.50			24.00		73.90
Aetomylaeus vespertilio		6.90											73.90
Dasyatis parvonigra				64.20	50.00	4.53	12.55			12.80		21.35	165.43
Dasyatis zugei	65.00	25.00	23.60	44.80	119.50	166.29	88.75	53.30	75.80	126.55	59.35	104.00	951.94
Gymmura japonica	0.60	0.80		14.40				5.50		15.20			36.50
Gymnura poecilura	11.70	2.50	3.70	19.90	3.50	5.00	4.30		21.75	38.15	11.95	13.80	136.25
Himantura fai	80.00											13.80	136.25 80.00
Himantura gerrardi	298.40	105.90	83.60	112.80	118.90	161.72	108.15	195.35	143.00	62.65	204.40	122.40	1,717.27
Himantura jenkinsii	10.20			8.60	24.20			15.65					58.65
Himantura leoparda	82.30 34.00											30.00	112.30
Himantura uarnacoides	34.00												34.00
Himantura uarnak	12.90 21.00					3.45				1.60			17.95
Neotrygon kuhlii	127.20	136.30	108.10	31210	170.10								21.00
Pastinachus gracilicaudus	136.90		26.10	22.70	49.50	115.57		304.5		240.00	332.45	113.80	2,733.36
Rhinobatos borneensis	28.20	9.10	16.40	6.60	5.50	15.61	8.35	50.45	18.50	11.35	69.20	2.00	464.57
Rhinoptera jayakari	246.10						34.50						176.91
Rhynchobatusa australiae		11.30	4.90	28.00	13.50	11.15	11.15	1.80	23.45	0.90	12.50	30.60	149.25
Taeniura lymma		1.80	2.40										4.20
Taeniurops meyeni		2.80											2.80
Total Weight Rays	1,156.70	302.40	268.80	634.10	554.70	804.03	628.10	656.05	557.90	509.20	713.85	437.95	7,223.78
Alopias pelagicus	26.00					105.05		30.50					7,221.55
Atelomycterus marmoratus	6.10	15.80	19.60	17.90	17.40	25.01	5.85	3.50		4.95	19.90	10.70	146.71
Carcharhinus brevipinna	4.80	22.60											27.40
Carcharhinus sealei	2.90												2.90
Carcharhinus sorrah	76.20	25.00	42.00	13.80	37.90	16.47	14.90	19.15	14.70	36.30	88.25	84.45	469.12
Chiloscyllium plagiosum	197.30	126.80	131.60	84.70	76.70	59.15	33.65	52.80	62.65	63.30	46.25	82.25	1,017.15
Chiloscyllium punctatum	170.40	122.20	187.20	172.10	250.40	292.14	245.75	250.40	161.45	135.35	129.20	84.15	2,200.74
Halaelurus buergeri	0.20				0.50								0.70
Hemigaleus microstoma	1.30					3.98				0.35		1.60	7.23
Hemipristis elongata	1.90	1.30	6.00	3.40	11.80	9.14	2.65	3.40	6.70	2.30			48.59

Species	Year/Month												
	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Heterodontus zebra	3.20	6.60	5.80	3.80									19.40
Loxodon macrorhinus		7.60		16.10						5.35			29.05
Mustelus manazo					19.70	16.62		1.95		2.50			40.77
Orectolobus leptolineatus		7.00											7.00
Sphyrna lewini	13.40	16.00	17.50	50.70	27.40	8.60	10.25		18.55	8.45	11.50	83.15	265.50
Squatina tergocellatoides	2.40												2.40
Stegostoma fasciatum												41.00	41.00
Total Weight Sharks	506.10	350.90	409.70	362.50	441.80	536.16	313.05	361.70	264.05	258.85	295.10	387.30	4,487.21
Grand Total	1,662.80	653.30	678.50	996.60	996.50	1,340.19	941.15	1,017.75	821.95	768.05	1,008.95	825.25	11,710.99

2.3.6 Size Range of Sharks and Rays

During the first six (6) months of the project, from August 2015 to January 2016, most rays species sampled in general were juvenile, except for some species that matured such as Dasyatis parvonigra caught in November and Disember 2015, Rhinobatos borneensis (August 2015 to January 2016) and Taeniura lymma caught in September 2015. Size range of all rays species from August 2015 to January 2016 are shown in Table 28A (i) from February to July 2016, some rays species were mature such as Dasyatis parvonigra that caught in February, Dasyatis zugei and Rhinobatos borneensis almost throughout the period. Size range of all rays species sampled from February to July 2016 in Table 28A (ii).

As for sharks, some species sampled from August 2015 to January 2016 were mature such as Atelomycterus marmoratus, Chiloscyllium plagiosum and C. punctatum. Halaelurus buergeri sampled in August 2015 and January 2016, and Hemigaleus microstoma in August 2015 were also mature. Other species such as Heterodontus zebra, Laxodon macrorhinus, Mustelus manazo and Orectolobus leptolineatus were also mature. Size range of all sharks species sampled from August 2015 to January 2016 are shown in Table 28B (i). During the second phase from February to July 2016, Atelomycterus marmoratus, Chiloscyllium plagiosum and C. punctatum were mature in the whole period. Other species were at juvernile stage or young. Size range of all sharks species sampled from February to July 2016 are shown in Table 28B (ii).
Table 28A (i): Size Range of Rays (Disc Length) Except for Rhinobatos borneensis and Rhynchobatus australiae (Total Length) for Six

Species	Year/Month																	
	2015															2016		
	Aug			Sep			Oct			Nov			Dec			Jan		
Rays	Min	Max	Av															
Aetobatus ocellatus	32.0	73.0	52.5													65.2	65.2	65.2
Aetomylaeus vespertilio				47.5	47.5	47.5											65.2	65.2
Dasyatis parvonigra										23.0	50.0	38.4	29.0	58.0	38.07	27.5	41.2	34.4
Dasyatis zugei	19.0	30.0	25.2	20.0	30.0	27.1	20.0	31.0	26.4	19.0	32.0	25.2	15.0	32.0	24.94	17.1	31.2	24.8
Gymnura japonica	19.5	19.5	19.5	23.0	23.0	23.0				21.0	40.0	34.2						24.8
Gymmura poecilura	29.0	39.0	35.0	21.0	22.0	21.3	24.0	34.0	29.0	25.0	41.0	36.3	38.0	38.0	38.00	43.5	43.5	43.5
Himantura fai	99.0	104.0	101.5															
Himantura gerrardi	22.5	76.0	44.5	18.0	52.0	33.6	20.0	70.0	34.3	18.0	62.0	25.5	16.0	73.0	28.19	17.0	81.0	28.2
Himantura jenkinsii	58.0	58.0	58.0							57.0	57.0	57.0	49.0	57.0	52.67			
Himantura leoparda	81.0	92.0	87.0															
Himantura uarnacoides	50.0	62.0	55.3															
Himantura uarnak	68.0	68.0	68.0													32.4	34.5	33.5
Mobula japanica	77.0	77.0	77.0															
Neotrygon kuhlii	19.0	32.0	24.3	11.0	31.5	24.1	16.0	33.0	21.8	13.0	33.0	21.2	14.0	33.0	22.67	12.0	32.2	21.9
Pastinachus gracilicaudus	51.0	80.0	59.2				59.0	62.0	60.5	56.0	58.0	57.0	48.0	60.0	53.60	47.4	58.3	52.2
Rhinobatos borneensis	63.0	86.0	76.8	51.0	81.0	67.2	48.0	88.0	65.8	59.0	78.0	72.2	63.0	82.0	74.00	53.0	92.0	72.1
Rhinoptera jayakari	37.5	60.0	49.1															
Rhynchobatus australiae				47.5	80.0	68.9	62.0	81.5	68.5	56.0	100.0	76.4	50.0	91.5	73.79	88.3	97.3	91.9
Taeniura lymma				34.0	34.0	34.0	25.0	27.5	25.8									
Taeniurops meyeni				41.0	41.0	41.0												

Table 28A (ii): Size Range of Rays (Disc Length) Except for Rhinobatos borneensis and Rhynchobatus australiae (Total Length) for Six

Species	Year/Month																	
	2016																	
	Feb			Mar			Apr			May			Jun			Jul		
	Min	Max	Av															
Rays																		
Aetobatus ocellatus				83.3	83.3	83.3							71.3	71.3	71.3			
Dasyatis parvonigra	49.5	51.2	50.4							30.2	46.3	38.3				27.2	50.1	37.2
Dasyatis zugei	17.2	34.2	23.8	20.1	31.3	25.9	19.2	31.3	24.4	19.3	31.2	23.9	19.5	31.2	23.3	19.2	32.3	25.0
Gymnura japonica				43.3	43.3	43.3				24.5	40.4	35.6						
Gymnura poecilura	20.3	33.3	25.3				22.5	42.3	33.1	16.2	41.0	28.0	32.3	45.3	38.3	22.2	40.2	29.4
Himantura fai																	673	28.4
Himantura gerrardi	17.20	67.50	28.4	18.0	58.3	31.4	18.2	62.5	31.1	19.2	69.2	30.9	25.3	61.3	47.0	18.0	67.3	28.4
Himantura jenkinsii				44.5	62.3	53.4												
Himantura leoparda																95.0	95.0	95.0
Himantura uarnak										27.0	27.2	27.1						
Neotrygon kuhlii	16.0	32.2	23.3	16.1	31.3	21.7	15.5	33.2	21.6	15.5	30.2	21.6	15.0	30.3	22.6	14.0	26.3	20.1
Pastinachus gracilicaudus	53.3	68.3	60.8				71.3	71.3	71.3				43.2	70.3	58.1			
Rhinobatos borneensis	44.1	85.3	68.0	51.3	88.3	73.3	65.5	89.3	78.6	55.5	92.5	75.7				67.2	71.3	69.3
Rhinoptera jayakari	64.3	64.5	64.4											95.4	70.1	573	125.3	72.7
Rhynchobatus australiae	59.4	85.2	72.4	74.2	74.2	74.2	67.5	107.3	90.5	60.20	60.2	60.2	51.2	95.4	70.1	57.3		

Table 28B (i): Size Range of Sharks (Total Length) for Six Months from August 2015 to January 2016. All Measurements in cm.

Species	Year/Month																	
	2015															2016		
	Aug			Sep			Oct			Nov			Dec			Jan		
Sharks	Min	Max	Av															
Alopias pelagicus	122.0	122.0	122.0													1643	327.0	208.9
Atelomycterus marmoratus	52.0	63.0	59.1	49.0	69.0	59.7	48.0	71.0	60.3	53.0	84.0	62.9	43.0	69.0	57.3	52.3	67.3	60.5
Carcharhinus brevipinna	70.0	81.0	75.5	77.0	86.0	81.8												
Carcharhinus sealei	55.0	79.0	67.0															
Carcharhinus sorrah	74.5	149.0	93.6	71.5	116.0	86.2	89.0	123.0	101.4	96.0	99.5	97.2	92.0	120.0	103.5	98.2	102.0	100.1
Chiloscyllium plagiosum	25.0	82.0	68.5	48.0	80.5	67.6	49.0	96.0	68.4	51.0	84.0	69.3	46.0	84.0	69.0	42.1	79.3	64.3
Chiloscyllium punctatum	56.0	94.0	74.0	37.0	92.0	73.3	49.0	94.0	73.2	49.0	100.0	74.9	44.0	96.0	73.8	36.2	94.1	74.1
Halaelurus buergeri	38.5	38.5	38.5										48.0	48.0	48.0			
Hemigaleus microstoma	72.5	72.5	72.5													75.4	88.2	81.8
Hemipristis elongata	57.0	73.0	65.0	58.0	58.0	58.0	59.0	93.0	74.0	69.0	82.0	75.5	47.0	98.0	71.6	43.3	84.0	62.9
Heterodontus zebra	54.5	73.0	63.8	66.0	80.0	73.0	55.0	75.5	63.8	76.0	76.0	76.0						
Loxodon macrorhinus				59.0	85.0	69.4				58.0	88.0	75.3						
Mustelus manazo													97.0	107.0	100.8	78.2	107.0	92.9
Orectolobus leptolineatus				95.0	95.0	95.0												
Sphyrna lewini	47.0	76.0	67.9	71.0	84.0	77.6	51.0	133.0	75.6	44.0	93.0	66.5	56.0	93.0	69.7	47.2	101.0	74.9
Squatina tergocellatoides	64.2	64.2	64.2															

Table 28B (ii): Size Range of Sharks (Total Length) for Six Months from February to July 2016. All Measurements in cm.

Species	Month/Year																	
	2016																	
	Feb			Mar			Apr			Mar			Jun			Jul		
	Min	Max	Av															
Sharks																		
Alopias pelagicus				194.3	199.3	196.8												
Atelomycterus marmoratus	52.0	63.2	58.8	39.2	66.3	58.5				44.2	65.0	58.0	48.2	69.1	59.6	42.2	74.5	59.9
Carcharhinus sorrah	96.2	104.5	100.4	100.3	122.3	111.3	55.5	71.3	61.5	57.2	128.3	64.1	56.2	132.2	80.6	51.3	124.3	81.3
Chiloscyllium plagiosum	51.4	85.3	70.1	48.5	81.4	68.0	54.5	83.3	70.0	50.3	93.4	70.4	54.3	82.4	67.0	54.2	83.3	70.5
Chiloscyllium punctatum	42.1	101.2	74.1	36.2	99.5	73.2	49.1	96.5	78.0	49.5	95.2	76.1	52.1	94.3	73.6	49.2	104.5	78.5
Hemigaleus microstoma										51.2	51.2	51.2				58.2	67.3	62.8
Hemipristis elongate	89.3	89.3	89.3	55.2	65.2	59.3	62.3	105.2	77.2	52.3	70.5	60.8						
Loxodon macrorhinus										60.2	77.3	67.2						
Mustelus manazo				82.2	82.2	82.2				61.3	88.3	74.8						
Sphyrna lewini	55.2	78.2	68.0				50.5	95.5	67.1	49.5	82.2	56.4	50.1	73.4	58.0	53.4	74.2	65.0
Stegostoma fasciatum																204.0	204.0	204.0

2.3.7 Usage and Marketing

As a non-targeted species, and the landings represent only less than 1% of trawl nets total catch, sharks and rays are mainly consumed locally. The price ($\mathrm{RM} / \mathrm{kg}$) varied according to species, size and season. For rays, the catches are for local consumption as well as for outside markets, especially to Peninsular Malaysia. Grilled rays are special delicacies that highly enjoyed by locals and tourists alike. At SAFMA landing jetty, wholesale price of rays are between the range of RM1 - RM4 depanding on the species and size. Himantura walga and Dasyatis zugei were priced RM1 - RM1.50 while Neotrygon kuhlii and Rhychobatus australiae can fetch up to RM4/kg. The prices were eventually doubled or even more once the rays sold at the fish markets. Among the favourite species for consumption are Himantura uarnak, H. gerarrdi, H. undulata, H. leoparda and Urogymnus asperrimus.

Ray's skin for some species can fetch a bigger value than the meat. Ray's skin of Himantura uarnacoides, H. gerrardi, H. pastinacoides, H. lobistoma, H. jenkinsii, H. fai, Pastinachus atrus, P. gracilicaudus and P. solocirostris is processed before being sent to Kuala Lumpur by plane or container. The prices are varied according to species and size of skin.

For sharks, except for the fins, shark meat are mostly to cater domestic demand and sold mainly at fish wet markets in Kota Kinabalu, though some were brought to interior part of Sabah. Some of the fins, however, are exported mainly to Penisular Malaysia. All part of sharks are fully utilised. For example, sharks teeths and jaws are used as souvenirs and shark head's skin are considered as a new delicacy.

Whole sharks body, without the fins, are sold at the average price of RM2.50 at SAFMA landing jetty in Kota Kinabalu. The prices however increased to double or even triple once its reach the fish markets. For example, Carcharhinus sorrah and Chiloscyllium plagiosum are sold at RM2/kg at SAFMA jetty before sold at RM4/kg at nearby Kota Kinabalu fish market. The same species of sharks fetch higher value, as expensive as $\mathrm{RM} 6 / \mathrm{kg}$ at fish markets that situated outside of Kota Kinabalu City. The details of the price range and market destination by species is shown in Table 29.

Table 29: Price of Sharks and Rays by Species and Market Destination in Kota Kinabalu

	Range Price (RM/kg)	Part	Market Destination
Ray	$2-2.5$	Whole body	Local (Kota Kinabalu), P. Malaysia
Aetobatus ocellatus	$2.5-3.0$	Whole body	Local (Kota Kinabalu), P. Malaysia
Aetomylaeus vespertilio	$2.0-3.0$	Whole body	Local (Kota Kinabalu), P. Malaysia
Dasyatis pavronigra	$1.5-3.0$	Whole body	Local (Kota Kinabalu)
Dasyatis zugei	$2.0-2.5$	Whole body	Local (Kota Kinabalu)
Gymnura japonica	$2.0-2.5$	Whole body	Local (Kota Kinabalu)
Gymnura poecilura	$2.5-3.0$	Whole body, skin	Local (Kota Kinabalu), P. Malaysia; Skin sold to Peninsular Malaysia
Himantura fai	$2.0-2.5$	Whole body, skin	Local (Kota Kinabalu), P. Malaysia; Skin sold to Peninsular Malaysia
Himantura gerrardi	$2.0-2.5$	Whole body, skin	Local (Kota Kinabalu), P. Malaysia; Skin sold to Peninsular Malaysia
Himantura jenkinsii	$2.0-2.5$	Whole body, skin	Local (Kota Kinabalu), P. Malaysia; Skin sold to P. Malaysia
Himantura leoparda	$2.5-3.0$	Whole body, skin	Local (Kota Kinabalu), P. Malaysia;
Himantura uarnacoides			

	Range Price (RM/kg)	Part	Market Destination
			Skin sold to P. Malaysia
Himantura uarnak	1.5-3.0	Whole body, skin	Local (Kota Kinabalu), P. Malaysia; Skin sold to P. Malaysia
Himantura walga	1.0-2.0	Whole body	Local (Kota Kinabalu)
Mobula japanica	2.0-2.5	Whole body	Local (Kota Kinabalu), P. Malaysia
Neotrygon kuhlii	2.0-4.0	Whole body	Local (Kota Kinabalu)
Pastinachus gracilicaudus	2.5-3.0	Whole body, skin	Local (Kota Kinabalu), P. Malaysia; Skin sold to P. Malaysia
Pastinachus stellurostris	2.0-2.5	Whole body, skin	Local (Kota Kinabalu), P. Malaysia Skin sold to P. Malaysia
Rhinobatos borneensis	3.0-3.5	Whole body	Local (Kota Kinabalu)
Rhinoptera jayakari	2.0-2.5	Whole body	Local (Kota Kinabalu)
Rhychobatus australiae	3.5-4.0	Whole body, fins	Local (Kota Kinabalu), P. Malaysia
Taeniura lymma	2.0-2.5	Whole body	Local (Kota Kinabalu)
Taeniurops meyeni	2.0-2.5	Whole body	Local (Kota Kinabalu)
Shark			
Alopias pelagicus	2.0-2.5	Whole body, fins	Local Market (Kota Kinabalu)
Atelomycterus marmoratus	2.0-2.5	Whole body	Local Market (Kota Kinabalu)
Carcharhinus brevipinna	2.5-3.0	Whole body, fins	Local Market (Kota Kinabalu)
Carcharhinus sealei	3.0-3.5	Whole body, fins	Local Market (Kota Kinabalu)
Carcharhinus sorrah	3.0-3.5	Whole body, fins	Local Market (Kota Kinabalu)
Chiloscyllium hasseltii	3.0-3.5	Whole body	Local Market (Kota Kinabalu)
Chiloscyllium plagiosum	2.0-2.5	Whole body	Local Market (Kota Kinabalu)
Chiloscyllium punctatum	2.0-2.5	Whole body	Local Market (Kota Kinabalu)
Halaelurus buergeri	2.0-2.5	Whole body	Local Market (Kota Kinabalu)
Hemigaleus microstoma	2.0-2.5	Whole body	Local Market (Kota Kinabalu)
Hemipristis elongata	3.0-3.5	Whole body, fins	Local Market (Kota Kinabalu)
Heterodontus zebra	2.0-2.5	Whole body	Local Market (Kota Kinabalu)
Loxodon macrorhinus	2.0-2.5	Whole body	Local Market (Kota Kinabalu)
	Range Price (RM/kg)	Part	Market Destination
Mustelus manazo	2.0-2.5	Whole body	Local Market (Kota Kinabalu)
Orectolobus leptolineatus	2.0-2.5	Whole body	Local Market (Kota Kinabalu)
Sphyrna lewini	3.0-3.5	Whole body, fins	Local Market (Kota Kinabalu)
Squatina tergocellatoides	2.0-2.5	Whole body	Local Market (Kota Kinabalu)
Stegostoma fasciatum	2.5-4.0	Whole body	Local Market (Kota Kinabalu)

2.4 Sandakan

2.4.1 Landing Samples

A total of 135 landings were sampled during the study period with average of 12 samples a month. The samples were catches from trawl nets, that operated mainly in Zone 3 with 84 vessels, followed by 29 vessels in Zone 2 and 22 vessels in Zone 4. The details of are shown in Table 30.

Table 30: Number of Landings by Gear Sampled during the Study at Sandakan (Sandakan Fish Market Jetty)

Type of Gear	Year/Month												
	2015					2016							Grand Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Trawl net Zone 2	2	2	2	2	5	2	1	3	3	1	3	3	29
Trawl net Zone 3	7	10	6	6	6	9	9	8	5	8	5	5	84
Trawl net Zone 4	4		2	4	1	1	3	1	2	2	2		22
Total	13	12	10	12	12	12	13	12	10	11	10	8	135

2.4.2 Fishing Ground and Catch Composition by Gear Type

The total catch of trawl nets that sampled were $13,138 \mathrm{~kg}$ comprising $10,170 \mathrm{~kg}$ of rays (77.4%) and $2,969 \mathrm{~kg}$ of sharks, which is only 22.6% of the combined catches. All trawlers operated beyond three nm from coastline, and mainly between 12 nm to 30 nm from the coastline. A total of $5,611 \mathrm{~kg}$ of rays was landed by Zone 3 trawl nets followed by Zone 4 trawl nets at $3,279 \mathrm{~kg}$. As for sharks, Zone 3 trawl nets also landed the highest catch, with $1,882 \mathrm{~kg}$ followed by Zone 4 trawl nets at 677 kg . The highest landing of rays by month was from Zone 3 trawl nets at $1,217 \mathrm{~kg}$ in August while 788 kg , also from Zone 3 in January and followed by 703 kg from Zone 4 in August. For sharks, the highest landing by month came from Zone 3 trawl nets at 532 kg in September 2015, followed by 331 kg from Zone 4 trawl nets in August 2015 and 240 kg from Zone 3 trawl nets in July 2016. The details are shown in Table 31.
Table 31: Weight of Sharks and Rays (in kg) Caught by Different Types of Gear at Sandakan (Sandakan Fish Market Jetty)

Type of Gear	Year/Month												
	2015					2016							Grand Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Ray													
Trawl net Zone 2	67.4	181.7	206.5	62.7	128.6	26.6	35.9	58.3	83.2	3.8	349.8	75.9	1,280.2
Trawl net Zone 3	1,217.2	914.5	289.6	279.3	271.5	788.4	168.1	325.1	264.6	460.0	176.5	455.9	5,610.7
Trawl net Zone 4	702.5		412.0	449.6	244.0	183.1	238.6	158.5	510.0	271.8	108.7		3,278.8
Total Ray	1,987.1	1,096.2	908.1	791.6	644.1	998.1	442.6	541.9	857.8	735.5	635.0	531.8	10,169.7
Shark													
Trawl net Zone 2	82.0	28.2	17.1	42.1	47.1	49.2	17.2	45.6	47.9	0.8	9.9	23.1	410.1
Trawl net Zone 3	197.9	532.6	86.8	190.3	135.5	106.1	66.0	54.1	127.8	93.9	51.1	239.5	1,881.5
Trawl net Zone 4	330.8		29.1	88.8	33.0		27.3			59.8	108.3		677.0
Total Shark	610.7	560.8	133.0	321.2	215.6	155.3	110.5	99.7	175.7	154.5	169.3	262.6	2,968.7
Grand Total	2,597.8	1,657.0	1,041.1	1,112.8	859.7	1153.4	553.1	641.5	1,033.5	890.0	804.2	794.4	13,138.3

2.4.3 Sharks and Rays Composition

A total of $581,358 \mathrm{~kg}$ of fish was landed from 135 landings during the study period. Rays and sharks made up $10,170 \mathrm{~kg}$ and $2,969 \mathrm{~kg}(1.8 \%$ and $0.5 \%)$ from the total landing respectively. Landings of bony fish was $568,220 \mathrm{~kg}$ or 97.7%. Average landings per month for sharks and rays were 247 kg and 848 kg respectively. The highest landing by month for rays was 1,987 kg in August, followed by $1,096 \mathrm{~kg}$ in September 2015 and 998 kg in January 2016. However, the highest landing for sharks was 611 kg in August, followed by 561 kg in September and 321 kg in November 2015. In general, the landing of sharks and rays ranged between $0.2-1.1 \%$ and $0.8-3.2 \%$ respectively from total landing. The details are shown in
Table 32.
Table 32: Catch Composition of Sharks, Rays and Bony Fish by Month from 135 Landings at Sandakan (Sandakan Fish Market Jetty). All Weight in Kilogram

Year	Month	Weight of Ray	$\begin{gathered} \hline \% \\ \text { Ray } \end{gathered}$	Weight of Shark	\% Shark	Weight of Bony Fish	$\begin{gathered} \text { \% Bony } \\ \text { Fish } \\ \hline \end{gathered}$	Total Catch
2015	Aug	1,987.1	3.2	610.7	1.0	58,980.0	95.8	61,577.8
	Sep	1,096.2	2.1	560.8	1.1	51,540.0	96.8	53,197.0
	Oct	908.1	1.8	133.0	0.3	49,140.0	97.9	50,181.1
	Nov	791.6	1.3	321.2	0.5	58,910.0	98.2	60,022.8
	Dec	644.1	1.0	215.6	0.3	66,100.0	98.7	66,959.7
2016	Jan	998.1	2.1	155.3	0.3	46,570.0	97.6	47,723.4
	Feb	442.6	0.8	110.5	0.2	55,940.0	99.0	56,493.1
	Mar	541.9	1.1	99.7	0.2	50,150.0	98.7	50,791.5
	Apr	857.8	1.9	175.7	0.4	44,510.0	97.7	45,543.5
	May	735.5	2.0	154.5	0.4	35,900.0	97.6	36,790.0
	Jun	635.0	2.2	169.3	0.6	27,760.0	97.2	28,564.2
	Jul	531.8	2.3	262.6	1.1	22,720.0	96.6	23,514.4
Total		10,169.7		2,968.7		568,220.0		581,358.3
	ve	847.5	1.8	247.4	0.5	47,351.7	97.7	48,446.5

2.4.4 Sample Size

A total of 1,733 tails belonging to 882 rays and 851 sharks were sampled comprising 19 species of rays and 14 species of sharks. The most common and abundant rays species were Neotrygon kuhlii followed by Himantura gerrardi and Taeniura lymma. The most common species were H. jenkinsii, Rhynchobatus australiae, Himantura uarnacoides, Rhinoptera jayakari, Himantura uarnak, Himantura fai, Himantura leoparda and Himantura uarnacoides. These species were recorded between 11-12 months. Other species such as Aetobatus ocellatus and Dasyatis zugei were landed in seven months; Pastinachus gracilicaudus and Rhina encylostoma in five months during study period. The highest number of rays sampled by month was 145 tails in August 2015 followed by 88 tails in July and 85 tails in June 2016.

The most common and abundant shark species were Chiloscyllium punctatum followed by Carcharhinus sorrah and Chiloscyllium plagiosum. Common species were Atelomycterus marmoratus, Rhizoprionodon acutus, Sphyrna lewini, Carcharhinus sealei, Hemigaleus microstoma and Stegostoma fasciatum. All these species were landed between 8-12 month. Other species such as Hemipristis elongata, Carcharhinus limbatus, C. leucas, C. brevipinna and Galeocerdo cuvier, were only landed between 3-7 months during the study period. The highest number of sharks sampled by month was 196 tails in August, followed by 74 tails in September 2015 and 69 tails in May 2016. The details are as shown in Table 33
Table 33: Sample Size of Sharks and Rays by Species at Sandakan (Sandakan Fish Market Jetty)

Species	Year/Month												
	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Aetobatus ocellatus	5			3		1	2	1		1	1		14
Dasyatis zugei	14	14			15			8	4		7	13	75
Himantura fai	9	8	5	5	7	9	2	4	6	3	2		60
Himantura gerrardi	21	16	11	12	15	19	15	7	19	20	28	14	197
Himantura jenkinsii	9	5	3	7	3	2	3	2	1	5	2	1	43
Himantura leoparda	3	3	4	3	1	3	2	1	2	4	1		27
Himantura uarnacoides	16	4	6	3	4	6	6	4	1	5	2		57
Himantura uarnak	1	4	5	1		1	2	2	1	1	1	3	22
Himantura undulata												4	4
Himantura walga												5	5
Mobula thurstoni	1							1					2
Neotrygon kuhlii	43	6	6	16	9	17	19	10	13	22	27	30	218
Pastinachus atrus												2	2
Pastinachus gracilicaudus	3	1	2						1			2	9
Rhina ancylostoma	1		1		1	1			1				5
Rhinobatos borneensis			2				1			3			6
Rhinoptera jayakari		3	2	1	1	1	1	1	2	1		1	14
Rhynchobatus australiae	8	1	1	5	4	5	5	2	2	5	3	4	45
Taeniura lymma	11	4	2	3	1	10	10	5		11	11	9	77
Total Rays	145	69	50	59	61	75	68	48	53	81	85	88	882
Atelomycterus marmoratus	16	5	4	2	2	6	8	3	10	4	8	8	76
Carcharhinus brevipinna						2					1	5	8
Carcharhinus leucas	4	2		3	1								10
Carcharhinus limbatus		3	1			1	2		2		1		10
Carcharhinus sealei	3	1	1	1	2	2		2		1	1	7	21
Carcharhinus sorrah	33	9	1	12	3	10	5	9	7	10	17	16	132
Chiloscyllium plagiosum	29	9	8	7		11	16	5	3	19	12	4	123
Chiloscyllium punctatum	70	30	28	19	13	19	19	6	18	25	15	13	275
Galeocerdo cuvier	4	1		1	1	1							8
Hemigaleus microstoma	4		12	3	10		2	6		3	2	4	46
Hemipristis elongata	2	4				2	2		3	2		1	16
Rhizoprionodon acutus	17	6	10	6	3	5	1	2	8	4	4	3	69
Sphyrna lewini	9	2	3	9		3	1	3	4	1	3	4	42
Stegostoma fasciatum	5	2		1	3	1	1		1		1		15
Total Sharks	196	74	68	64	38	63	57	36	56	69	65	65	851
Grand Total	341	143	118	123	99	138	125	84	109	150	150	153	1,733

2.4.5 Weight of Sharks and Rays by Species

A total of $13,138 \mathrm{~kg}$ was landed from 135 landings comprising $10,170 \mathrm{~kg}$ rays and $2,969 \mathrm{~kg}$ sharks. For rays, the highest landing by weight was from species Himantura fai amounting to $2,315 \mathrm{~kg}$, followed by H. uarnacides ($1,465 \mathrm{~kg}$), H. leoparda ($1,367 \mathrm{~kg}$), Himantura gerrardi ($1,013 \mathrm{~kg}$), H. jenkinsii $(985 \mathrm{~kg})$, H. uarnak (896 kg) and Neotrygon kuhlii (571 kg). The highest landing by month was 445 kg for H . fai in August, followed by 331 kg in September 2015 and 287 kg in January 2016. For H. uarnacoides, the highest landing was 421 kg in August 2015, followed by 176 kg in January 2016 and 121 kg in December 2015. For H. leoparda, the highest landing was 211 kg in May 2016 followed by 187 kg in November and 182 kg in August 2015. The highest landing for Himantura gerrardi and H. jenkinsii was in August 2015 at 119 kg and 380 kg respectively. For Himantura uarnak, the highest landing was 168 kg in September 2015and for Neotrygon kuhlii was 88 kg in August 2015. Weight of other species was less than ranged between 2 kg (Himantura walga) to 382 kg (Rhynchobatus australiae).

The highest landing of shark species were 896 kg for Chiloscyllium punctatum followed by 695 kg for Carcharhinus sorrah, 343 kg for Stegostoma fasciatum, 297 kg for Carcharhinus leucas, and 251 kg for Chiloscyllium plagiosum. The highest landing by month for Chiloscyllium punctatum was 190 kg in September, followed by 135 kg in August and 108 kg in November 2016. For Carcharhinus sorrah, the highest landing was 235 kg in August 2015 followed by 110 kg in July 2016 and 69 kg in September 2015. The highest landing for Stegostoma fasciatum was 88 kg in August, followed by 72 kg in December and 66 kg in September 2015. Weight of other species ranged between 21 kg (Galeocerdo cuvier) to 95 kg (Atelomycterus marmoratus). The details are shown in Table 34.
Table 34: Weight of Sharks and Rays (in kg) by Species at Sandakan (Sandakan Fish Market Jetty)

2.4.6 Size Range of Sharks and Rays

In general from August 2015 to January 2016, both mature and immature rays species were sampled. Mature species included Dasyatis zugei sampled in August and September 2015, Himantura fai (August, September, October 2015), Himantura jenkinsii (August, Disember 2015 and January 2016), Himantura leoparda (August and November 2016), Himantura uarnacoides (August, September, November, December 2015 and January 2016), Himantura uarnak (August and November 2015), Rhynchobatus australiae (August and October 2015) and Taeniura lymma in October and November 2016. Other species were mostly immature. Size range of all rays species sampled from August 2015 to January 2016 are shown in Table 35A (i).

During the second period from February to July 2016, mature rays species were Himantura jenkinsii sampled in March and April, Himantura leoparda (April and July), Himantura uarnacoides (March and April), Himantura uarnak (March, April and July), and Taeniura lymma in February, March, May, June and July. Other species were mostly immature. Size range of all rays species sampled from February to July 2016 are shown in Table 35A (ii).

As for sharks, in general from August 2015 to January 2016, both mature and immature species were sampled. Mature species included Atelomycterus marmoratus sampled from August 2015 to January 2016, Chiloscyllium plagiosum (August, October and November 2015), C. punctatum (September and December 2015), Hemigaleus microstoma (August, October, November and December 2015) and Stegostoma fasciatum in September, November and December 2015. First maturing size of these species (total length) are 45 cm for male Atelomycterus marmoratus, 50 cm for Chiloscyllium plagiosum, and 147 cm for Stegostoma fasciatum. Other species were mostly immature such as Carcharhinus leucas, C. limbatus, C. sorrah, C. sealei, Galeocerdo cuvier, Rhizoprionodon acutus and Sphyrna lewini. Size range of all sharks species from August 2015 to January 2016 are shown in Table 35B (i).

During the second period from February to July 2016, most mature sharks species were Atelomycterus marmoratus and Chiloscyllium plagiosum sampled from Febuary to July, Chiloscyllium punctatum (May and June), Hemigaleus microstoma (March and May), and Stegostoma fasciatum in April and June. Other species were mostly immature. Size range of all sharks species sampled from February to July 2016 are shown in Table 35B (ii).
Table 35A (i): Size Range of Rays Species (Disc Length) Except for Rhinobatos borneensis and Rhynchobatus australiae (Total Length) for Six Months at Sandakan (Sandakan Fish Market Jetty) from August 2015 to January 2016

	Year/Month																	
	2015															2016		
	Aug			Sep			Oct			Nov			Dec			Jan		
	Min	Max	Ave															
Aetobatus ocellatus	24.0	75.0	35.6							25.0	33.0	29.3				81.0	81.0	81.0
Dasyatis zugei	20.0	30.0	26.4	19.0	30.0	24.7							19.0	30.0	24.1			
Himantura fai	63.0	108.0	97.3	57.0	110.0	89.9	75.0	107.0	93.8	64.0	108.0	82.8	57.0	109.0	79.4	63.0	109.0	83.6
Himantura gerrardi	23.0	64.0	41.9	30.0	64.0	44.2	22.0	40.0	34.8	24.0	61.0	41.8	24.0	62.0	38.4	22.0	64.0	40.0
Himantura jenkinsii	42.0	114.0	93.2	42.0	89.0	74.0	42.0	88.0	58.0	38.0	89.0	53.1	85.0	90.0	87.3	88.0	90.0	89.0
Himantura leoparda	65.0	130.0	105.0	65.0	120.0	95.0	65.0	112.0	93.8	100.0	122.0	111.3	99.0	99.0	99.0	65.0	120.0	99.0
Himantura uarnacoides	70.0	112.0	91.6	72.0	112.0	95.5	70.0	98.0	82.2	71.0	115.0	99.7	71.0	112.0	95.0	70.0	113.0	94.0
Himantura uarnak	121.0	121.0	121.0	80.0	121.0	95.8	80.0	91.0	84.2	122.0	122.0	122.0				80.0	80.0	80.0
Himantura undulata																		
Himantura walga																		
Mobula thurstoni	44.5	44.5	44.5															
Neotrygon kuhlii	18.0	32.0	25.9	20.0	30.0	26.7	21.0	32.0	27.3	15.5	32.0	23.4	24.0	32.0	28.2	20.0	32.0	27.5
Pastinachus atrus																		
\qquad	75.0	84.0	78.0	83.0	83.0	83.0	75.0	84.0	79.5									
Rhinobatos borneensis							52.0	67.0	59.5									
Rhinoptera jayakari				36.5	83.0	52.0	37.0	38.0	37.5	36.0	36.0	36.0	36.0	36.0	36.0	40.0	40.0	40.0
\qquad	109.0	168.0	138.5	74.0	74.0	74.0	165.0	165.0	165.0	104.0	110.0	107.0	59.0	80.0	72.3	104.0	110.0	107.0
Taeniura lymma	23.0	25.0	24.3	24.0	25.0	24.8	25.0	30.0	27.5	23.0	34.0	27.7	24.0	24.0	24.0	22.0	25.0	24.0

Table 35A (ii): Size Range of Rays Species (Disc Length) Except for Rhinobatos borneensis and Rhynchobatus australiae (Total Length) for Six Months at Sandakan (Sandakan Fish Market Jetty) from February to July 2016

	2016																	
	Feb			Mar			Apr			May			Jun			JuI		
	Min	Max	Ave															
Ray																		Ave
Aetobatus ocellatus	75.0	81.0	78.0	81.0	81.0	81.0				33.0	33.0	33.0	75.0	75.0	75.0			
Dasyatis zugei				20.0	30.0	25.4	27.0	30.0	28.5				23.0	30.0	26.3	19.0	29.0	23.5
Himantura fai	63.0	71.0	67.0	75.0	99.0	82.5	63.0	107.0	88.7	99.0	106.0	101.3	62.0	99.0	80.5			
Himantura gerrardi	31.0	62.0	44.2	32.0	61.0	42.8	24.0	63.0	43.9	23.0	63.0	40.8	20.0	54.0	32.4	19.0	63.0	34.9
Himantura jenkinsii	35.0	58.0	45.7	88.0	90.0	89.0	89.0	89.0	89.0	38.0	88.0	57.4	37.0	89.0	63.0	59.0	59.0	59.0
Himantura leoparda	65.0	99.0	82.0	65.0	65.0	65.0	100.0	100.0	100.0	65.0	120.0	102.3	100.0	100.0	100.0			
Himantura uarnacoides	56.0	84.0	70.3	73.0	111.0	91.3	115.0	115.0	115.0	71.0	99.0	82.4	57.0	115.0	86.0			
Himantura uarnak	90.0	91.0	90.5	80.0	122.0	101.0	122.0	122.0	122.0	91.0	91.0	91.0	122.0	122.0	122.0	67.0	69.0	67.7
Himantura undulata																28.0	93.0	68.3
Himantura walga																17.0	24.0	20.7
Mobula thurstoni				44.5	44.5	44.5												
Neotrygon kuhlii	20.0	31.0	27.3	19.0	32.0	26.8	16.0	32.0	23.4	16.0	33.0	26.4	15.5	30.5	22.3	13.0	30.0	20.9
Pastinachus atrus																55.0	95.0	75.0
Pastinachus gracilicaudus							83.0	83.0	83.0							77.0	80.0	78.5
Rhina ancylostoma																		
Rhinobatos borneensis	50.0	50.0	50.0							51.0	67.0	57.7						
Rhinoptera jayakari	53.0	53.0	53.0	53.0	53.0	53.0	36.5	49.8	43.2	39.8	39.8	39.8				63.0	63.0	63.0
Rhynchobatus australiae	56.0	103.0	78.4	102.0	102.0	102.0	92.0	165.0	128.5	56.0	107.0	77.9	57.0	85.0	68.3	85.0	85.0	85.0
Taeniura lymma	23.0	34.0	26.5	23.0	34.0	26.20				24.0	34.0	27.6	24.0	34.0	26.2	24.0	34.0	28.7

Table 35B (i): Size Range of Sharks (Total Length) for Six Months at Sandakan (Sandakan Fish Market Jetty) from August 2015 to

	2015															2016		
	Aug			Sep			Oct			Nov			Dec			Jan		
	Min	Max	Ave															
Shark																		
Atelomycterus marmoratus	47.0	95.0	61.5	54.0	57.0	55.2	54.0	58.0	55.5	54.0	74.0	64.0	58.0	60.0	59.0	53.0	58.0	55.3
Carcharhinus brevipinna																98.0	100.0	99.0
Carcharhinus leucas	117.0	123.0	119.0	160.0	160.0	160.0				123.0	160.0	147.0	123.0	123.0	123.0			
Carcharhinus limbatus				58.0	86.0	68.0	84.0	84.0	84.0							59.0	59.0	59.0
Carcharhinus sealei	50.0	55.0	53.0	57.0	57.0	57.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	58.0	56.5	55.0	57.0	56.0
Carcharhinus sorrah	73.0	186.0	90.9	72.0	93.0	83.9	90.0	90.0	90.0	55.0	120.0	85.6	82.0	92.0	87.0	71.0	92.0	83.2
Chiloscyllium plagiosum	42.0	99.0	63.6	42.0	73.0	60.2	42.0	71.0	62.5	61.0	80.0	70.6				42.0	73.0	58.5
Chiloscyllium punctatum	40.0	82.0	67.2	50.0	82.0	70.1	40.0	82.0	66.1	40.0	83.0	65.5	56.0	82.0	70.1	41.0	82.0	61.5
Galeocerdo cuvier	77.0	95.0	89.5	77.00	77.00	77.00				93.0	93.0	93.0	77.0	77.0	77.0	94.0	94.0	94.0
Hemigaleus microstoma	47.0	95.0	64.3				47.0	96.0	65.4	54.0	95.0	70.7	47.0	95.0	61.2			
Hemipristis elongata	64.0	105.0	84.5	64.0	108.0	96.0										64.0	109.0	86.5
Rhizoprionodon acutus	41.0	55.0	48.1	41.0	55.0	49.3	46.0	54.0	49.7	46.0	54.0	50.0	45.0	52.0	49.7	46.0	54.0	48.5
Sphyrna lewini	50.0	57.0	53.4	53.0	54.0	53.5	52.0	54.0	53.3	50.0	82.0	61.2				51.0	57.0	54.3
Stegostoma fasciatum	102.0	202.0	144.2	181.0	201.0	191.0				200.0	200.0	200.0	106.0	185.0	158.3	107.0	107.0	107.0

Table 35B (ii): Size Range of Sharks (Total Length) for Six Months at Sandakan (Sandakan Fish Market Jetty) from February to July

	Feb ${ }^{\text {c }}$ Mar 2016																	
Shark	Min	Max	Ave															
Atelomycterus marmoratus	54.0	74.0	61.3	54.00	58.00	56.33	48.0	74.0	56.1	49.0	74.0							
Carcharhinus brevipinna Carcharhinus leucas						56.33	48.0	74.0	56.1	49.0	74.0	60.5	49.5 74.0	57.0 74.0	53.9 74.0	48.0 74.0	60.5 89.0	53.6 81.6
Carcharhinus limbatus	57.0	84.0	70.5				60	86.0										
Carcharhinus sealei				55.00	56.00	55.50		86.0	73.0				60.0	60.0	60.0			
Carcharhinus sorrah	55.0	86.0	76.0	55.00	92.00	80.78	55.0	120.0	83.3	55.0	55.0	55.0	57.0	57.0	57.0	41.0	58.0	51.4
Chiloscyllium							55.0	120.0	83.3	55.0	93.0	80.0	46.0	106.0	70.2	46.0	135.0	71.3
plagiosum	41.0	80.0	62.9	62.00	72.00	67.20	72.5	74.5	73.7	42.0	80.0	69.8	42.0	72.3	66.3	42.0	72.0	62.3
punctatum	40.0	82.0	67.0	44.0	80.0	56.8	40.0	82.0	67.0	43.0	83.0	71.4	49.0	86.0	73.3	46.0	82.0	63.6
Galeocerdo cuvier														86.0		46.0	82.0	63.6
Hemigaleus microstoma	54.00	61.00	57.50	47.0	95.0	67.7				54.0	95.0	70.7	43.5	63.0	53.3	54.0	63.0	
Hemipristis elongata	64.00	64.00	64.00				64.0	108.0	92.3	105.0	107.0	106.0				148.0	148.0	148.0
Rhizoprionodon acutus	55.00	55.00	55.00	46.0	53.0	49.5	46.0	55.0	50.4	46.0	54.0	48.8	46.0	55.5	50.0	47.0	148.0	$\frac{148.0}{50.3}$
Sphyrna lewini	51.00	51.00	51.00	50.0	56.0	53.3	51.0	56.0	53.8	55.0	55.0	55.0	59.0	65.5	62.3	50.0	55.0	52.3
Stegostoma fasciatum	107.00	107.00	107.00				201.0	201.0	201.0				197.0	197.0	197.0			52.3

2.4.7 Usage and Marketing

The scenario for usage and marketing for sharks and rays in Sandakan is more or less are similar to Kota Kinabalu. Sharks and rays are mainly consumed locally. For rays, the catches are for local consumption as well as to fullfill demand from Peninsular Malaysia. At Sandakan Fish Market jetty, wholesale price of rays are between the range of RM0.80 RM4/kg depanding on the species. Neotrygon kuhlii and Dasyatis zugei are priced as cheap as RM 0.80/kg while Pastinachus atrus, Rhinobatos borneensis and Rhychobatus australiae can fetch a price as high as RM4/kg. The prices are eventually doubled or even more once the rays sold at the fish markets. Ray's skin can fetch a bigger price than the meat. The prices are varied according to species and size of skin. Ray's skin is processed before being sent to Kuala Lumpur by plane or container. The prices are varied according to species and size of skin.

For sharks, shark meat are mostly to cater domestic demand and sold mainly at fish wet markets in Kota Kinabalu. While shark fins soup are still served in some chinese restaurants in Sandakan, some are sent mainly to Peninsular Malaysia. Apart from the fin and meat, other parts of sharks such as the teeth, jaw and skin are all fully utilised. For example, sharks teeths and jaws are used as souvenirs and shark head's skin are considered as a new delicacy.

Whole sharks body, without the fins, are sold between RM0.80 - RM2.50/kg at Sandakan Fish Market jetty. The prices however increased to double or even triple once its reach the fish markets. For example, Carcharhinus sorrah are sold up to RM2.50/kg at Sandakan Fish Market jetty but the price doubled at nearby fish markets. The details of the price range and market destination by species is shown in Table 36. Small, medium and big size category for each species is as shown in Appendix IV

Table 36: Price of Sharks and Rays by Species and Market Destination in Sandakan

	Range Price (RM/kg)	Part	Market Destination
Ray	$1.5-3.0$	Whole body	Local (Sandakan), Peninsular Malaysia
Aetobatus ocellatus	$0.8-1.0$	Whole body	Local (Sandakan)
Dasyatis zugei	$1.5-3.5$	Whole body, skin	Local (Sandakan), Peninsular Malaysia; Skin sold to Peninsular Malaysia
Himantura fai	$0.8-2.5$	Whole body, skin	Local (Sandakan), Peninsular Malaysia; Skin sold to Peninsular Malaysia
Himantura gerrardi	$1.5-3.5$	Whole body, skin	Local (Sandakan), Peninsular Malaysia; Skin sold to Peninsular Malaysia
Himantura jenkinsii	$1.5-3.5$	Whole body, skin	Local (Sandakan), Peninsular Malaysia; Skin sold to Peninsular Malaysia
Himantura leoparda	$1.5-3.5$	Whole body, skin	Local (Sandakan), Peninsular Malaysia; Skin sold to Peninsular Malaysia
Himantura uarnacoides	$1.5-3.5$	Whole body, skin	Local (Sandakan), Peninsular Malaysia; Skin sold to Peninsular Malaysia
Himantura uarnak			

	Range Price (RM/kg)	Part	Market Destination
Himantura undulata	$1.5-3.5$	Whole body, skin	Local (Sandakan), Peninsular Malaysia; Skin sold to Peninsular Malaysia
Himantura walga	$1.0-1.2$	Whole body	Local (Sandakan)
Mobula thurstoni	$1.0-2.0$	Whole body	Local (Sandakan)
Neotrygon kuhlii	$0.8-2.0$	Whole body	Local (Sandakan), Peninsular Malaysia
Pastinachus atrus	$3.0-4.0$	Whole body, skin	Local (Sandakan), Peninsular Malaysia
Pastinachus gracilicaudus	$1.5-3.0$	Whole body, skin	Local (Sandakan), Peninsular Malaysia
Rhina ancylostoma	$1.5-2.0$	Whole body, fins	Local (Sandakan)
Rhinobatos borneensis	$1.5-4.0$	Whole body, fins	Local (Sandakan)
Rhinoptera jayakari	$1.0-3.0$	Whole body	Local (Sandakan)
Rhychobatus australiae	$1.5-4.0$	Whole body, fins	Local (Sandakan), Peninsular Malaysia
Taeniura lymma	$0.8-2.0$	Whole body	Local (Sandakan)
Sharks			Market Destination
Atelomycterus marmoratus	$1.0-1.2$	Whole body	(Local) Sandakan
Carcharhinus brevipinna	$0.8-2.0$	Whole body	(Local) Sandakan
Carcharhinus leucas	$1.5-2.5$	Whole body	(Local) Sandakan
Carcharhinus limbatus	$1.0-2.0$	Whole body	(Local) Sandakan
Carcharhinus sealei	$0.8-2.5$	Whole body	(Local) Sandakan
Carcharhinus sorrah	$1.0-2.5$	Whole body	(Local) Sandakan
Chiloscyllium plagiosum	$0.8-1.5$	Whole body	(Local) Sandakan
Chiloscyllium punctatum	$0.8-1.5$	Whole body	(Local) Sandakan
Galeocerdo cuvier	$1.0-1.5$	Whole body	(Local) Sandakan
Hemigaleus microstoma	$0.8-1.5$	Whole body	(Local) Sandakan
Hemipristis elongata	$1.0-2.0$	Whole body	(Local) Sandakan
Heterodontus zebra	$1.0-1.5$	Whole body	(Local) Sandakan
Loxodon macrorhinus	$0.8-2.0$	Whole body	(Local) Sandakan
Rhizoprionodon acutus	$0.8-1.5$	Whole body	(Local) Sandakan
Sphyrna lewini	$0.8-2.0$	Whole body	(Local) Sandakan

2.4.8 Catch Per Unit Effort (CPUE)
Table 37: Days at operation by gears sampled during the study period in Sabah (Kota Kinabalu and Sandakan)

Full Gear	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Trawl Net Zone 2	19	26	12	12	52	12	6	18	18	20	25	18	238
Trawl Net Zone 3	162	139	135	129	109	121	123	121	108	132	116	33	1,428
Trawl Net Zone 4	69	62	66	100	56	81	111	110	91	93	81		920
Trawl Net Zone 5	8				22	29	7		15		13		94
Table 38: Numbers of operation by gears sampled during the study period in Sabah (Kota Kinabalu and Sandakan)													
Full Gear	2015					2016							Total
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
Trawl Net Zone 2	51	76	29	35	148	26	16	42	48	54	63	46	634
Trawl Net Zone 3	499	405	423	390	315	352	353	365	342	398	337	95	4,274
Trawl Net Zone 4	206	186	209	307	165	240	327	328	278	284	257		2,787
Trawl Net Zone 5	24				66	87	21		45		39		282

The top 10 catch per unit effort (CPUE) ray species captured by trawl net, combined for Kota Kinabalu and Sandakan, differed between zone. For zone 3, Himantura gerrardi topped the list with 1.21 kg per days or 0.40 kg per hauls, followed by Neotrygon kuhlii with 1.07 kg per days or 0.36 per hauls. For zone 4, Neotrygon kuhlii was on top of the list with 1.48 kg per days or 0.49 kg per hauls compare with Himantura fai with 1.00 kg per days or 0.33 kg per hauls. The same species that dominated in both zone 3 and zone 4 are Himantura gerrardi, H. fai, H. uarnacoides, H. leoparda, H. uarnak, Neotrygon kuhlii, Pastinachus gracilicaudus, Dasyatis zugei and Rhynchobatus australiae.

The first 3 species of sharks in the top 10 catch per unit effort (CPUE) for both zone 3 and zone 4 were in the same order, with Chiloscyllium punctatum on the top, followed by Chiloscyllium plagiosum and Carcharhinus sorrah. In terms of CPUE (kg/days), Chiloscyllium punctatum recorded 1.15, C. plagiosum with 0.50 and Carcharhinus sorrah with 0.42 in zone 3 compare to $1.12,0.39$ and 0.36 in zone 4 respectively. The top 10 CPUE of rays and sharks species captured by trawl net zone 3 and zone are shown in Table 39A and Table 39B.

Table 39A: Top 10 CPUE ray species captured by Trawl Net Zone 3 during the study period in Sabah (Kota Kinabalu and Sandakan)

	Scientific Name	Total weight (kg) by Species	CPUE (kg/days)	CPUE (kg/hauls)
1	Himantura gerrardi	1721.4	1.21	0.40
2	Neotrygon kuhlii	1525.7	1.07	0.36
3	Himantura fai	1149.0	0.80	0.27
4	Himantura uarnacoides	775.7	0.54	0.18
5	Himantura jenkinsii	728.8	0.51	0.17
6	Himantura leoparda	660.0	0.46	0.15
7	Himantura uarnak	414.9	0.29	0.10
8	Pastinachus gracilicaudus	414.7	0.29	0.10
9	Dasyatis zugei	371.0	0.26	0.09
10	Rhynchobatus australiae	213.0	0.15	0.05

Table 39B: Top 10 CPUE ray species captured by Trawl Net Zone 4 during the study period in Sabah (Kota Kinabalu and Sandakan)

	Scientific Name	Total weight (kg) by Species	CPUE (kg/days)	CPUE (kg/hauls)
1	Neotrygon kuhlii	$1,358.0$	1.48	0.49
2	Himantura fai	921.3	1.00	0.33
3	Himantura uarnacoides	638.0	0.69	0.23
4	Himantura gerrardi	637.3	0.69	0.23
5	Himantura leoparda	589.3	0.64	0.21
6	Dasyatis zugei	479.9	0.52	0.17
7	Himantura uarnak	393.1	0.43	0.14
8	Rhinoptera jayakari	280.7	0.31	0.10
9	Rhynchobatus australiae	264.9	0.29	0.10

Table 39C: Top 10 CPUE shark species captured by Trawl Net Zone 3 during the study period in Sabah (Kota Kinabalu and Sandakan)

	Scientific Name	Total weight (kg) by Species	CPUE (kg/days)	CPUE (kg/hauls)
1	Chiloscyllium punctatum	$1,643.6$	1.15	0.38
2	Chiloscyllium plagiosum	713.6	0.50	0.17
3	Carcharhinus sorrah	603.5	0.42	0.14
4	Carcharhinus leucas	211.0	0.15	0.05
5	Stegostoma fasciatum	187.5	0.13	0.04
6	Sphyrna lewini	129.2	0.09	0.03
7	Atelomycterus marmoratus	107.9	0.08	0.03
8	Hemipristis elongata	83.8	0.06	0.02
9	Alopias pelagicus	56.5	0.04	0.01
10	Hemigaleus microstoma	47.3	0.03	0.01

Table 39D: Top 10 CPUE shark species captured by Trawl Net Zone 4 during the study period in Sabah (Kota Kinabalu and Sandakan)

	Scientific Name	Total weight (kg) by Species	CPUE (kg/days)	CPUE (kg/hauls)
1	Chiloscyllium punctatum	$1,028.7$	1.12	0.37
2	Chiloscyllium plagiosum	354.7	0.39	0.13
3	Carcharhinus sorrah	332.3	0.36	0.12
4	Stegostoma fasciatum	149.5	0.16	0.05
5	Atelomycterus marmoratus	98.6	0.11	0.04
6	Carcharhinus leucas	86.0	0.09	0.03
7	Sphyrna lewini	78.9	0.09	0.03
8	Alopias pelagicus	76.0	0.08	0.03
9	Hemipristis elongata	24.7	0.03	0.01
10	Carcharhinus brevipinna	22.6	0.02	0.01

3.0 OUTPUT AND OUTCOME

The project outputs and outcomes are summarised in Table 40 as shown below.

Table 40: Output and Outcome

No	Output	Outcome
1.	Thirteen (13) trained personnel in sharks and rays taxonomy from the Department of ofe Fisheries Malaysia and Fisheries Department of Sabah.	Trained staffs are now able to make the right and valid identification of species. Training materials stored electronically and easy to excess.
2.	A standardised format for data collection for national activity produced.	Improved technique of data collection for implementation at national level.
3.	Detailed information on the percentages of sharks and rays from the total landing at	Confirmed earlier data published in Malaysian National Statistics. Sharks

No	Output	Outcome
	project sites.	and rays were not targeted and contributed to less than 2\% of total marine landing.
4.	Information on relative dominance of the different species of sharks and rays obtained.	Increased awareness of needs and measures for shark conservation and management on specific species.
5.	Information on the monthly fluctuation of the different species of sharks and rays obtained.	Trends of landings by species analysed for national level management.
6.	Information on usage and marketing of the landed sharks and rays were obtained from the project.	Confirmed earlier report in current NPOA-Sharks that all sharks and rays are landed whole, fully utilised with no finning activities onboard vessels.
7.	A report on landing of sharks and rays up to species level from two sites in Perak and Sabah respectively.	Data recording on sharks and rays will be improved from generic terms 'sharks' and 'rays' to species level.
8.	Issues and problems arising from this activity identified and improvements made especially with the data collection format.	Development of a comprehensive national data collection system for sharks and rays as part of the National Plan of Action Sharks
9.	Specimens collected during sampling activities deposited for future reference.	A national repository for elasmobranchs has been established at
the Fisheries Research Institute, Kg.		
Acheh, Perak and Fisheries Research		
Centre, Likas, Kota Kinabalu.		

4.0 FUTURE ACTIVITIES

Malaysia is highly commited in managing and conserving its sharks and rays. Some future activities had been underlined, as follows;
i. Continuing to record landing data up to species level at the existing sites.
ii. Extending the program to other states in Malaysia.
iii. Seeking national funding to;
a. Continue the sharks data collection program
b. Conduct trainings/courses at national level
c. Attend meetings and seminars at national and international level
d. Conduct public awareness
e. Publish materials (posters, templates, identification manuals)
iv. Using the current program finding to ;
a. Conduct Non-detriment Findings (NDFs) study on sharks.
b. Rectify various issues concerning sharks management ant national and international level.
c. Provide input for the next Malaysia NPOA-Shark.
v. Conducting training for fisheries staff on sharks data collection (SEAFDEC, Terengganu and on-sites)
vi. Continuing public awareness campaign, such as on the current regulation of listing on endangered species, government policy on not serving shark fin soup during official events and rectifying the misconception of 'shark finning' and 'shark fishing' terms.
vii. Enhancing enforcement capacity through relevant training, such as the identification of sharks and rays species and its parts.
viii. Expending the ongoing study on the usage and marketing, as well as the socioeconomy related to sharks and rays in Sabah, to other states of Malaysia.

5.0 CONCLUSION

A project on recording landing data of sharks and rays up to species level was conducted in two districts in the State of Perak and Sabah respectively. During this project thirteen (13) staff from Department of Fisheries Malaysia and Department of Fisheries Sabah trained in taxonomy and in data collection using the agreed regional format. Two facing the Straits of Malacca, namely Larut Matang and Manjung Utara in Perak, and Kota Kinabalu and Sandakan in Sabah were selected as the study sites, as they were the main landing sites of sharks and rays in the states. The landing data were collected at thirteen (13) jetties in Perak and two (2) jetties in Sabah.

A total of thirty three (33) species of rays from five (5) Order and nine (9) Families while twenty (20) species of sharks from four (4) Order and five (5) Families were recorded during the study period in Perak.

Larut Matang recorded nineteen (19) species of rays from three (3) Orders and five (5) Families, and fourteen (14) spesies of sharks from two (2) Orders and three (3) Families. Whereas Manjung Utara recorded fourteen (14) species of rays from two (2) Order and four (4) Families, and six (6) species of sharks from two (2) Orders and three (3) Families. Details are shown in Appendix II. In term of percentage of total marin landings, rays and sharks contributed 2.03% and 0.56% at Larut Matang, while for Manjung Utara at 1.38% and 0.38% for rays and sharks respectively.

The most abundant sharks species at Larut Matang were Chiloscyllium hasseltii, Chiloscyllium punctatum, Atelomycterus marmoratus and Carcharhinus sorrah while for rays were Neotrygon kuhlii, Himantura gerrardi, Himatura walga and Dasyatis zugei. The most abundant sharks species at Manjung Utara were Chiloscyllium hasseltii, Chiloscyllium punctatum and Atelomycterus marmoratus while for rays were Himatura walga, Himantura gerrardi, Neotrygon kuhlii, and Dasyatis zugei.

A total of twenty one (21) species of sharks from five (5) Orders and eleven (11) Families while twenty five (25) spesies of rays from two (2) Orders and eight (8) Families were recorded during the study period in Sabah. Kota Kinabalu recorded the highest with seventeen (17) species of sharks and twenty (20) rays compare to Sandakan with fourteen (14) species of sharks and nineteen (19) rays (Appendix II). For Sabah, the landings of sharks and rays were also minimal, with the contribution of 0.24% and 0.39% at Kota Kinabalu, and 0.53% and 1.81% at Sandakan respectively. These figures confirmed earlier data as
published in Malaysian National Statistics that sharks and rays were only by-catch and not targeted and contributed less than 2% of the total marine landing.

For Sabah, the most abundant sharks species at Kota Kinabalu were Chiloscyllium punctatum followed by Chiloscyllium plagiosum and Atelomycterus marmoratus and rays Neotrygon kuhlii followed by Himantura gerrardi and Dasyatis zugei. The most common sharks species were Chiloscyllium punctatum, Chiloscyllium hasseltii and Carcharhinus sorrah while for rays Neotrygon kuhlii, followed by Himantura gerrardi and Dasyatis zugei.

In the district of Sandakan, the most abundant sharks species were Chiloscyllium punctatum followed by Carcharhinus sorrah and Chiloscyllium plagiosum, and rays Neotrygon kuhlii followed by Himantura gerrardi and Taeniura lymma. The most common sharks species were Chiloscyllium punctatum, Carcharhinus sorrah, Atelomycterus marmoratus and Rhizoprionodon acutus while for rays Neotrygon kuhlii, followed by Himantura gerrardi, H. jenkinsii and Rhynchobatus australiae.

In Perak, sharks and rays were caught mainly by trawl nets. Other gears used were longlines and drift nets. In Sabah, trawl net is the main gear to catch sharks and rays.

The top 10 catch per unit effort (CPUE) ($\mathrm{kg} /$ days and $\mathrm{kg} / \mathrm{hauls}$) for rays species captured by trawl net Zone C in Perak were Neotrygon kuhlii, Himantura gerrardi and Himantura walga, while for sharks were dominated by Chiloscyllium hasseltii, Chiloscyllium punctatum and Carcharhinus sorrah.

The top 10 catch per unit effort (CPUE) ray and shark species captured by trawl net, combined for Kota Kinabalu and Sandakan, were determined in zone 3 and zone 4. For ray, Himantura gerrardi topped the list, followed by Neotrygon kuhlii and Himantura fai in zone 3. In zone 4, Neotrygon kuhlii was the main species, followed by Himantura fai and Himantura uarnacoides. For shark, the top 3 species for both zone 3 and zone 4 were in the same order, with Chiloscyllium punctatum came first, followed by Chiloscyllium plagiosum and Carcharhinus sorrah.

Usage and marketing information from this study confirmed that all sharks and rays were landed whole, fully utilised with no finning activities on board of vessels.

References

Ahmad, A. and Annie Lim, P.K. 2012. Field Guide to Sharks of the Southeast Asian Region. SEAFDEC/MFRDMD/SP/18:210 pp
Ahmad, A., Annie Lim, P.K., Fahmi and Dharmadi. 2013. Field Guide to Look-alike Sharks and Rays Species of the Southeast Asian Region. SEAFDEC/MFRDMD/SP/22:107 pp
Ahmad, A., Annie Lim, P.K., Fahmi and Dharmadi. 2014. Field Guide to Rays, Skates and Chimaeras of the Southeast Asian Region. SEAFDEC/MFRDMD/SP/25:289 pp
Ebert, D.A., Fowler, S., and Compagno, L. 2013. Sharks of the World, A Fully Illustrated Guide. Wild Nature Press. 528 pp
Compagno, L. J. V. 1984. FAO Species Catalogue. Vol. 4, Sharks of the World. An annotated and illustrated catalogue of shark species known to date. Part 1Hexanchiformes to Lamniformes; viii, 1-250. Part 2-Carcharhiniformes: x, 251-655. FAO Fisheries Synopsis 125: 1-655.
Compagno, L. J. V. and Niem, V. H. 1998. Sharks. In: FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific. K.E. Carpenter and V. H. Niem (Eds). Rome, FAO, 2: 1195-1368
Compagno, L. J. V. 1999. Checklist of Living Elasmobranches. In: Sharks, skates, and rays, the biology of elasmobranch fishes. W. C. Hamlett (Ed). Johns Hopkins University Press, Baltimore. 471-498
SEAFDEC. 2006. Report on The Study on Shark Production, Utilization and Management in the ASEAN Region. SEC/SP/75. 229 pp
Last, P. R. and Stevens, J. D. (1994). Sharks and Rays of Australia. CSIRO, 512 pp.
Yano, K., Ahmad, A., Gambang, A.C., Idris, A.H., Solahuddin, A.R. and Aznan, Z. 2005. Sharks and Rays of Malaysia and Brunei Darussalam. SEAFDEC-MFRDMD/SP/12. Kuala Terengganu. 557

SAMPLE OF STANDARD FORM Data Collection Project on Sharks and Rays (SEAFDEC)

Country		State/Province	
Landing Site		Day/Month/Year	
Name of Enumerator		Record No	

Vessel Information

Type of Fishing Gear			
Vessel Name		Registration No	
GRT		No of Crew	

Trip Information

Days at Sea		Days at Operation
Total Number of Operation		

Fishing Ground Information

Fishing Zone		Depth (average)	
Distance from port		Distance from coastline	
Longitude	Latitude		

Gear Information (Select and Check One Gear below)
\square Trawl Net

Width of Mouth	(m)	Height of Mouth	(m)
Length of Net	(m)	Mesh Size (Cod End)	(cm)
No of Operation/day	(times)	Time of Operation/haul	(hours)
Vessel Speed	(knot)	Fishing Layer	Mid / Bottom

Length of Net	(m)	Height of Net	(m)
Fishing Layer		Mesh Size	(cm)
No of Operation/day		Time of Operation/haul	(hours)

No of Hooks		Size of Hook	Cm
Time of Operation/day	(hours)	Vessel Speed	(knot)

Longline

Total No of Hooks		Size of Hook	Cm
Length of Mainline	(km)	Fishing Layer	Mid/Bottom
No of Operation/day	(times)	Time of Operation/set	(hours)

\square Purse Seine

Length of Net	(m)	Mesh Size (Bunt)	(cm)
No of Operation/day	(times)	Duration of Operation	(hours)
Fish Searching	Luring / FADs / Wild / Others ()	

Other gears:

A. Standard Operation Procedure:

1. This form is for a single sampling vessel.
2. Collect all fish (sharks and rays) if catch is less than 50 tails or $10-20 \%$ of the landed catch if more than 50 tails. Take samples randomly.
3. Separate them by species and sex.
4. Record Total Length-Weight for all sharks, rays and skates from the Family Pristidae, Rhynchobatidae, Rhinidae, Rhinobatidae, Narcinidae and Narkidae. Measure Disc Length-Weight for other ray species.
5. Measured Pre Caudal Length (PCL) for Alopias spp or other sharks and rays (Rhynchobatidae, Rhinidae, Rhinobatidae) if tail damage or cut.
6. Record total weight of all sharks and rays by species.
7. Record total weight of commercial bony fish and trash fish.
B. Length-weight of sharks

No	Species	Sex	TL	Wgt (kg)

C. Actual Weight of Sharks by Species

No	Species	Weight (Kg)

C. Length-weight of rays

No	Species	Sex	DL or DW	Wgt (kg)

D. Actual Weight of Rays by Species

No	Species	Weight (Kg)

Note:

All sharks and rays specimens should be measured and weighed if total number are less than 50 tails/boat

If total numbers are more than 50 tails, only 10-20\% (multi size and sex) should be selected for length - weight measurement.

3. Total Catch of Sampling Vessel (kg)

No.	All Sharks	All Rays	Commercial Bony Fish	Trash Fish	TOTAL

5. Price of Sharks and Marketing Information (Local Currency)

Species	Price/Kg (Small size)	Price/Kg (Medium size)	Price/Kg (Big size) (Peso)	Market Destination	Utilization

Please record:
Small Size (TL/PCL): $\quad \mathrm{cm} \sim \mathrm{cm} c a$
Medium Size (TL/PCL): $\quad \mathrm{cm} \sim \mathrm{cm} c a$
Big Size (TL/PCL): $\quad \mathrm{cm} \sim \mathrm{cm} c a$
Small Size (kg):
$\mathrm{kg} \sim \mathrm{kg} c a$
Medium Size (kg):
Big Size (TL/PCL):
$\mathrm{kg} \sim \mathrm{kg} c a$
$\mathrm{kg} \sim \mathrm{kg} c a$

6. Price of Rays and Marketing Information (Local Currency)

Name of Rays	Price/Kg (Small size)	Price/Kg (Medium size)	Price/Kg (Big size)	Market Destination	Utilization

Please record:

Small Size (DL/TL/PCL):	$\mathrm{cm} \sim \mathrm{cm} c a$
Medium Size (DL/TL/PCL):	$\mathrm{cm} \sim \mathrm{cm} c a$
Big Size (DL/TL/PCL):	$\mathrm{cm} \sim \mathrm{cm} c a$
Small Size (kg):	$\mathrm{kg} \sim \mathrm{kg} c a$
Medium Size (kg):	$\mathrm{kg} \sim \mathrm{kg} c a$
Big Size (TL/PCL):	$\mathrm{kg} \sim \mathrm{kg} c a$

Note: \qquad
\qquad
\qquad
\qquad

Appendix II

Checklist of Sharks and Rays Species Recorded During the Study Period

No	Orders/Families	Site 1	Site 2	Site 3	Site 4
Batoids/Rays					
	$\begin{aligned} & \text { ORDER } \\ & \text { MYLIOBATIFORMES } \end{aligned}$	Larut Matang	Manjung Utara	Kota Kinabalu	Sandakan
	Family Dasyatidae				
1	Dasyatis akajei	1	+	+	+
2	Dasyatis thetidis	1	+	+	+
3	Dasyatis fluviorum	+	1	+	+
4	Dasyatis zugei	1	1	1	1
5	Himantura gerrardi	$/$	1	1	1
6	Himantura cf. gerrardi	1	+	+	+
7	Dasyatis parvonigra			1	
8	Himantura fai	1	1	1	$/$
9	Himantura jenkinsii	1	1	1	1
10	Himantura pastinacoides	1	1	+	+
11	Himantura uarnak	1	1	1	1
12	Himantura uarnacoides	+	1	1	1
13	Himantura granulata	+	+	+	+
14	Himantura walga	$/$	/	+	$/$
15	Himantura undulata	1	+	+	1
16	Himantura leoparda	$+$	+	1	1
17	Neotrygon kuhlii	1	1	1	/
18	Taeniura lymma	+	+	1	1
19	Pastinachus gracilicaudus	+	+	$/$	/
20	Taeniurops meyeni	$+$	1	1	
21	Pastinachus atrus	$+$	+	+	1
	Family Gymnuridae				
22	Gymnura poecilura	+	1	1	+
23	Gymnura japonica	+	+	1	+
	Family Mobulidae				
24	Mobula thurstoni	+	+	+	1
25	Mobula japanica	+	+	1	+
	Family Rhinopteridae				
26	Rhinoptera jayakari	+	+	$/$	/
	Family Myliobatidae		-		
27	Aetobatus ocellatus	+	+	1	1
28	Aetomylaeus vespertilio	+	+	1	+
	ORDER RHINOBATIFORMES				
	Family Rhinobatidae				
29	Rhinobatos cf. borneensis	1	1	+	+
30	Rhinobatos borneensis	+	+	1	1

No	Orders/Families	Site 1	Site 2	Site 3	Site 4
20	Chiloscyllium cf. hasseltii	$/$	+	+	+
21	Chiloscyllium indicum	$/$	$/$	+	+
22	Chiloscyllium plagiosum	+		$/$	$/$
23	Chiloscyllium punctatum	$/$	$/$	$/$	$/$
24	Chiloscyllium sp.	$/$	+	+	+
25	Stegostoma fasciatum	+	$/$	$/$	$/$
26	Orectolobus leptolineatus	+	+	$/$	+
	ORDER HETERODONTIFORMES				
	Family Heterodonitidae				
27	Heterodontus zebra	+	+	$/$	+
	ORDER SQUATINIFORMES				
	Family Squatinidae	+	+	+	+
28	Squatina tergocellatoides	+		$/$	+
	ORDER LAMNIFORMES				
	Family Alopidae	+	+	$/$	+
29	Alopias pelagicus	14	6	17	14
	Total shark species				

Photo 1: Malaysia National Workshop on Sharks and Rays Data Collection in Sandakan, Sabah, August 2015.

Photo 2: Monthly Data Collection on Sharks and Rays from August 2015 to August 2016

Photo 3: Training for project enumerators in SEAFDEC, Terengganu, June 2015

Photo 4 (i), (ii) \& (iii): 'On-site Training' at Sandakan Fish Market jetty during the National Workshop, August 2015

Photo 5: SAFMA Jetty, main landing site in Kota Kinabalu

Photo 6 (i) \& (ii): Kota Kinabalu enumerators in action at SAFMA jetty

Photo 7: Sandakan Fish Market Jetty, main landing site in Sandakan

Photo 8 (i) \& (ii): Sandakan enumerators in action at Sandakan Fish Market jetty.

Photo 9: Workshop on Data Validation, 12-13 April 2016 at FRI Kg. Acheh, Perak

Range size of small, medium and big by species (in cm). Disc Length for all rays (except for species in family Rhinobatidae, Rhynchobatidae and Rhinidae) and Total Length for all shark species

No.	Species	Perak (Larut Matang)			Sabah (Sandakan)		
	Rays	Small	Medium	Big	Small	Medium	Big
	Family Dasyatidae						
1	Dasyatis akajei	<25	25-40	>40			
2	Dasyatis zugei	<20	20-26	>26			
3	Himantura gerrardi	<19	19-50	> 50	<20	20-50	>50
4	Himantura fai				<20	20-50	>50
5	Himantura jenkinsii				<20	20-50	>50
6	Himantura pastinacoides	<25	26-45	> 46			
7	Himantura uarnacoides				<20	20-50	>50
8	Himantura walga	<18	18-20	>20			
9	Himantura leoparda				<20	20-50	>50
10	Neotrygon kuhlii	< 14	14-21	>21	<20	20-50	>50
11	Pastinachus gracilicaudus				<50	50-100	>100
	Family Rhinopteridae						
12	Rhinoptera jayakari				<20	20-50	>50
	Family: Rhynchobatidae						
13	Rhynchobatus australiae	<40	40-100	> 100	< 50	50-100	>100
	Family Rhinidae						
14	Rhina ancylostoma				< 50	50-100	>100
	Sharks						
	Family: Scyliorhinidae						
15	Atelomycterus marmoratus	<32	32-44	>44			
16	Atelomycterus cf. erdmanni	<32	33-49	>50			
	Family Carcharhinidae						
17	Carcharhinus sorrah				<50	50-100	>100
18	Carcharhinus limbatus				<50	50-100	>100
19	Rhizoprionodon acutus				<50	50-100	>100
	Family Sphyrnidae						
20	Sphyrna lewini				< 50	50-00	>100
	Family Hemigaleidae						
21	Hemigaleus microstoma				<50	50-100	>100
	Family: Orectolobidae						
22	Chiloscyllium hasseltii	<35	40-50	>56			
23	Chiloscyllium punctatum	<35	36-55	>56	<50	50-100	>100

Check list of Sharks, rays, skates and chimaeras in Malaysia 2016 Sources of information: Darussalam. SEAFDEC/MFRDMD/SP/12. 557p
[2] Ahmad, A. and Lim, A.P.K. 2012. Field guide to sharks of the Southeast Asian Region. SEAFDEC/MFRDMD/SP/18. 210p
[3] Ahmad, A. and Lim, A.P.K., Fahmi, Dharmadhi and Tassapon, K. 2014. Field guide to rays, skates and chimaeras of the Southeast Asian
Region. SEAFDEC/MFRDMD/SP/25. 288p
[4] Last, P.R., White, W.T. and Pogonoski, J.J. 2010. Description of new sharks and rays from Borneo. CSIRO Marine and Atmospheric Research Paper No. 032. 165 pp
[5] Last, P.R., W.T. White., J.N. Caira., Dharmadi., Fahmi., K. Jensen., Annie, P.K.Lim., B.M. Manjaji-Matsumoto., G.J.P. Nyalor., J.J. Pogonoski., Stevens., J.D. and G.K. Yearsley. 2010. Sharks and rays of Borneo. CSIRO, Australia. 290 pp

$[6]$	Species recorded during EU-CITES project and SEAFDEC 2015-2016 Data collection Activities
X^{1}	New record for Malaysia (Recorded in Sabah)
X^{2}	New record for Malaysia (Recorded in Perak)
X^{3}	New record for Malaysia (Recorded in Pahang)
X^{4}	New record for Malaysia (Recorded in Sarawak)
X^{5}	New record for Malaysia (Recorded in Terengganu)

	SHARKS		$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$
	ORDER / Family /Scientific name	Common name (English)						
	HEXACHIFORMES	COW AND FRILLED SHARKS						
	1.Hexanchidae	Sixgill and sevengill sharks						
1	Hexanchus griseus (Bonnaterre, 1788)	Bluntnose sixgill shark	X	X				X

2	Heptranchias perlo (Bonnaterre, 1788)	Sharpnose sevengill shark						\mathbf{X}^{1}
	SQUALIFORMES	DOGFISHES						
	2. Squalidae	Dogfish sharks						
3	Squalus altipinnis Last, White \& Stevens, 2007	Western highfin spurdog					X	X
4	Squalus megalops (Macleay, 1881)	Snortnose spurdog	X	X				
	3. Centrophoridae	Gulper sharks						
5	Centrophorus moluccensis Bleeker, 1860	Smallfin gulper shark	X	X			X	
	SQUATINIFORMES	ANGEL SHARKS						
	4. Squatinidae	Angel sharks						
6	Squatina tergocellatoides Chen, 1963	Ocellated angelshark	X	X			X	\mathbf{X}
7	Squatina sp. 1	Brunei angelshark		X				
	HETERODONTIFORMES	BULLHEAD SHARKS						
	5. Heterodontidae	Bullhead sharks						
8	Heterondontus zebra (Gray, 1831)	Zebra bullhead shark	X	X			X	X
	ORECTOLOBIFORMES	CARPET SHARKS						
	6. Orectolobidae	Wobbegongs						
9	Orectolobus leptolineatus Last, Pogonoski \& White, 2010. Identified as Orectolobus maculatus (Bonnaterre, 1788) in [1]	Indonesian wobbegong Spotted wobbegong		X			X	X
	7. Hemiscylliidae	Longtailed carpet sharks						
10	Chiloscyllium cf. griseum Muller \& Henle, 1838. Identified as Chiloscyllium griseum Muller \& Henle, 1838in [1], [2]	Grey bambooshark	X	X				\mathbf{X}
11	Chiloscyllium hasseltii Bleeker, 1852	Indonesian bambooshark	X	X			X	X
12	Chiloscyllium indicum Bleeker, 1853	Slender bambooshark	X	X			X	X
13	Chiloscyllium plagiosum Bleeker, 1854	White-spotted bambooshark	X	X			X	X
14	Chiloscyllium punctatum Bleeker, 1855	Brown-banded bambooshark	X	X			X	X

15	Chiloscyllium sp.	Perak bambooshark						$\mathbf{X}^{\mathbf{2}}$
	8. Ginglymostomatidae	Nurse sharks						
16	Nebrius ferrugineus (Lesson, 1830)	Tawny nurse shark	X	X			X	X
	9. Rhincodontidae	Whale sharks						
17	Rhincoon typus Smith, 1828	Whale shark	X	X			X	X
	10. Stegostomatidae	Zebra sharks						
18	Stegostoma fasciatum (Hermann, 1783)	Zebra shark	X	X			X	X
	LAMNIFORMES	MACKEREL SHARKS						
	11. Alopidae	Thresher sharks						
19	Alopias pelagicus Nakamura, 1935	Pelagic thresher	X	X			X	X
	12. Lamnidae	Mackerel sharks						
20	Isurus oxyrinchus Rafinesque, 1810	Shortfin mako	X	X				
	CARCHARHINIFORMES	GROUND SHARKS						
	13. Scyliorhinidae	Catsharks						
21	Apristurus platyrhynchus (Tanaka, 1909)	Bigfin catshark					X	
22	Atelomycterus cf. baliensis White, Last \& Dharmadi, 2005	Bali catshark						\mathbf{X}^{2}
23	Atelomycterus cf. erdmani Fahmi \& White, 2015	Spotted-belly catshark						$\mathbf{X}^{\mathbf{2}}$
24	Atelomycterus marmoratus (Bennett, 1830)	Coral catshark	X	X			X	X
25	Cephaloscyllium circulopullum Yano, Ahmad \& Gambang, 2005	Circle-blotched pygmy swellshark	X	X				
26	Cephaloscyllium sarawakensis Yano, Ahmad \& Gambang, 2005	Sarawak pygmy swellshark	X	X				X
27	Cephaloscyllium cf. speccum Last, Seret \& White, 2008	Speckled swellshark		X				
28	Cephaloscyllium cf. variagatum Last \& White, 2008	Stripes swellshark		X				
29	Galeus eastmani (Jordan \& Snyder, 1904)	Gecko catshark		X				

30	Halaelurus buergeri (Muller \& Henle, 1838)	Blackspotted catshark		X				X
31	Halaelurus maculosus White, Last \& Steven, 2007. Identified as Halaelurus buergeri (Muller \& Henle, 1838) and in [1]	Indonesian speckled catshark Darkspot catshark	X	X				
	14. Proscylliidae	Finback catsharks						
32	Eridacnis radcliffei Smith, 1913. Identified as Eridacnis cf. radcliffei Smith, $1913 \text { in [2] }$	Pygmy ribbontail catshark		X				
	15. Triakidae	Hound sharks						
33	Mustelus manazo Bleeker, 1854	Star-spotted smoothhound	X	X			X	X
34	Mustelus mosis Hemprich \& Ehrenberg, 1899. Identified as Mustelus manazo Bleeker, 1854 in Last et al. (2010)	Arabian smoothhound Starspotted smoothhound	X	X				X
35	Mustelus widodoi White \& Last, 2006. Identified as Mustelus sp. 1 [Manjaji, 2002]	Whitefin smoothhound Grey smoothhound						X
36	Mustelus sp. [1]	Sarawak smoothhound	X	X				
	16. Hemigaleidae	Weasel sharks						
37	Chaenogaleus macrostoma (Bleeker, 1852)	Hooktooth shark	X	X			X	X
38	Hemigaleus microstoma Bleeker, 1852	Sicklefin weasel shark	X	X			X	X
39	Hemipristis elongatus (Klunzinger, 1871)	Fossil shark	X	X			X	X
40	Paragaleus tengi (Chen, 1963)	Straighttooth weasel shark	X				X	
	17. Carcharhinidae	Requiem sharks						
41	Carcharhinus albimarginatus (Ruppell, 1837)	Silvertip shark		X			X	
42	Carcharhinus amblyrhynchos (Bleeker, 1856)	Gray reef shark	X	X			X	X
43	Carcharhinus cf. amboinensis (Muller \& Henle, 1839)	Pigeye shark						\mathbf{X}^{3}
44	Carcharhinus amblyrhynchoides (Whitley,	Graceful shark	X	X				X

	1934)							
45	Carcharhinus borneensis (Bleeker, 1859)	Borneo shark	X	X			X	
46	Carcharhinus brevipinna (Muller \& Henle, 1839)	Spinner shark	X	X			X	X
47	Carcharhinus dussumieri (Muller \& Henle, 1839)	Whitecheek shark	X	X			X	X
48	Carcharhinus falciformis (Muller \& Henle, 1839)	Silky shark	X	X			X	X
49	Carcharhinus leucas (Muller \& Henle, 1839)	Bull shark	X	X			X	X
50	Carcharhinus limbatus (Muller \& Henle, 1839)	Common blacktip shark	X	X			X	X
51	Carcharhinus longimanus (Poey, 1861)	Oceanic whitetip shark		X				\mathbf{X}^{1}
52	Carcharhinus macloti (Muller \& Henle, 1839)	Hardnose shark	X	X				
53	Carcharhinus melanopterus (Quoy \& Gaimard, 1824)	Blacktip reef shark	X	X			X	X
54	Carcharhinus plumbeus (Nardo, 1827)	Sandbar shark	X	X			X	X
55	Carcharhinus sealei (Pietschmann, 1916)	Blackspot shark	X	X			X	X
56	Carcharhinus sorrah (Muller \& Henle, 1839)	Spottail shark	X	X			X	X
57	Galeocerdo cuvier (Peron \& Lesueur, 1822)	Tiger shark	X	X			X	X
58	Glyphis fowlerae Campagno, White \& Cavanagh, 2010	Borneo river shark		X			X	
59	Glyphis sp. [Last et al, 2010]	Mukah river shark		X			X	
60	Lamiopsis tephrodes (Fowler, 1905) Identified as Lamiopsis temmincki (Muller \& Henle, 1839) in [1]	Borneo broadfin shark	X	X			X	X
61	Loxodon macrorhinus Muller \& Henle, 1839	Sliteye shark	X	X			X	X
62	Prionace glauca (Linnaeus, 1758)	Blue shark		X				X

63	Rhizoprionodon acutus (Ruppell, 1837)	Milk shark	X	X			X	X
64	Rhizoprionodon oligolinx Springer, 1964	Grey sharpnose shark	X	X			X	X
65	Scoliodon laticaudus Muller \& Henle, 1838	Spadenose shark	X					X
66	Scoliodon macrorhynchos (Bleeker, 1852)	Pacific spadenose shark		X			X	X
67	Triaenodon obesus (Ruppell, 1837)	Whitetip reef shark	X	X			X	X
	18. Sphyrnidae	Hammerhead sharks						
68	Eusphyra blochii (Cuvier, 1817)	Winghead shark	X	X			X	
69	Sphyrna lewini (Griffith \& Smith, 1834)	Scalloped hammerhead	X	X			X	X
70	Sphyrna mokarran (Ruppell, 1837)	Great hammerhead	X	X			X	X
	RAYS							
	ORDER / Family /Scientific name	Common name (English)						
	PRISTIFORMES	SAWFISHES						
	1. Pristidae	Sawfishes						
1	Anoxypristis cuspidata (Latham,1794)	Narrow sawfish			X		X	
2	Pristis pristis (Linnaeus, 1758). Identified as Pristis microdon Latham, 1851 in [1]	Freshwater sawfish	X		X		X	
3	Pristis zijsron Bleeker, 1851	Green sawfish	X		X		X	
	RHINOBATIFORMES	GUITARFISHES						
	2. Rhinidae	Shark ray						
4	Rhina ancylostoma Bloch \& Schneider, 1801	Shark ray	X		X		X	X
	3. Rhynchobatidae	Wedgefishes						
5	Rhynchobatus australiae Whitley, 1939	Whitespotted wedgefish	X		X		X	X
6	Rhynchobatus laevis (Bloch \& Schneider, 1801)	Smoothnose wedgefish			X		X	X
7	2010 Rhynchobatus springeri Campagno \& Last,	Broadnose wedgefish			X	X	X	\mathbf{X}
	4. Rhinobatidae	Shovelnose rays						

8	Glaucostegus thouin (Anonymous, 1798). Identified as Rhinobatus thouin (Anonynous, 1789) in [1]	Clubnose guitarfish	X	X	X	\mathbf{X}
9	Glaucostegus typus (Bennett, 1830). Identified as Rhinobatus typus (Bennett, 1830) in [1]	Giant guitarfish	X	X	X	X
10	Rhinobatos borneensis Last, Seret \& Naylor, 2016. Identified as Rhinobatos formosensis Norman, 1926 in [1], [3]	Borneo guitarfish	X	X	X	\mathbf{X}^{1}
11	Rhinobatos cf. borneensis Last, Seret \& Naylor, 2016. Identified as Rhinobatos formosensis Norman, 1926 in [1], [3]		X	X		\mathbf{X}^{2}
	TORPEDINIFORMES	ELECTRIC RYAS				
	5. Narcinidae	Numbfishes				
12	Narcine brevilabiata Bessednov, 1966	Shortlip numbfish		X	X	X
13	Narcine brunnea Annandale, 1909	Brown numbfish	X	X		X
14	Narcine lingula Richardson, 1846	Rough numbfish		X	X	
15	Narcine maculata (Shaw, 1804)	Darkfinned numbfish	X	X	X	X
16	Narcine prodorsalis Bessednov, 1966	Tonkin numbfish	X	X		
17	Narcine timlei (Bloch \& Schneider, 1801). Identified as Narcine indica Henle, 1834 in Ahmad et al (2014)	Blackspotted numbfish	X	X		X
18	Narcine sp A	Perak Numbfish (small spot)				X^{2}
19	Narcine sp B	Perak Numbfish (large spot)				X^{2}
20	Narcine sp C	Perak Numbfish (many spots)				\mathbf{X}^{2}
	6. Narkidae	Sleeper rays				
21	Narke dipterygia (Bloch \& Schneider, 1801)	Spottail sleeper		X	X	X
22	Narke sp	Sarawak sleeper ray				X^{4}
23	Temera hardwickii Gray 1831	Finless sleeper ray		X	X	X

	RAJIFORMES	SKATES					
	7. Rajidae	Skates					
24	Dipturus kwangtungensis (Chu, 1960)	Kwangtung skate		X		X	
25	Dipturus sp	Sarawak skate					X^{4}
26	Okamejei cairae Last, Fahmi \& Ishihara, 2010	Borneo sand skate		X	X	X	X
27	Okamejei hollandi (Jordan \& Richardson, 1909). Identified as Raja (Okamejei) boesemani Ishihara, 1987 in [1]	Yellowspotted skate		X		X	
28	Okamejei jensenae Last \& Lim, 2010	Philippine ocellate skate		X	X	X	X
	8. Anacanthobatidae	Legskate					
29	Sinobatis borneensis (Chan, 1965)	Borneo leg skate		X		X	
	MYLIOBATIFORMES	STINGRAYS					
	9. Plesiobatidae	Stingarees					
30	Plesiobatis daviesi (Wallace, 1967)	Giant stingaree	X	X		X	
	10. Dasyatidae	Stingrays					
31	Dasyatis akajei (Muller \& Henle, 1841)	Red stingray	X	X			\mathbf{X}
32	Dasyatis cf. acutirostra Nishida \& Nakaya, 1988	Pointed snout stingray		X			
33	Dasyatis fluviorum Ogilby, 1908	Estuary stingray	X	X			
34	Dasyatis microps (Annandale, 1908)	Smalleye stingray	X	X		X	X
35	Dasyatis parvonigra Last \& White, 2008	Dwarf black stingray		X		X	X
36	Dasyatis sinensis (Steindachner, 1892)	Chinese stingray		X			
37	Dasyatis thetidis Ogilby, 1899	Thorntail stingray	X	X			X
38	Dasyatis ushiei (Jordan \& Hubbs, 1925)	Cow stingray				X	X
39	Dasyatis zugei (Muller \& Henle, 1841)	Sharpnose stingray	X	X		X	\mathbf{X}
40	Himantura astra Last, Manjaji-Matsumoto \& Pogonoski, 2008)	Blackspotted whipray		X			

41	Himantura fai Jordan \& Seale, 1906	Pink whipray	X	X	X	X
42	Himantura gerrardi (Gray, 1851)	Whitespotted whipray	X	X	X	X
43	Himantura cf. gerrardi	Whitespotted whipray (whole body)				X
44	Himantura granulata (Macleay, 1883)	Whitespotted mangrove whipray	X	X	X	
45	Himantura imbricata (Bloch \& Schneider, 1801)	Scaly whipray	X	X		
46	Himantura jenkinsii (Annandale, 1909)	Jenkin's whipray	X	X	X	X
47	Himantura kittipongi Vidthayanon \& Roberts, 2005	Roughback whipray		X	X	\mathbf{X}^{2}
48	Himantura leoparda Manjaji-Matsumoto \& Last, 2008	Leopard whipray		X	X	X
49	Himantura lobistoma Manjaji-Matsumoto \& Last, 2006	Tubemouth whipray		X	X	X
50	Himantura pastinacoides (Bleeker, 1852)	Round whipray		X		X
51	Himantura polylepis (Bleeker, 1852)	Giant freshwater whipray		X	X	X
52	Himantura signifer Compagno \& Robert, 1982	White-edge freshwater whipray	X	X		X
53	Himantura cf. signifer Compagno \& Robert, 1983	Pahang Yellow-edge freshwater whipray		X		\mathbf{X}^{3}
54	Himantura uarnacoides (Bleeker, 1852)	Whitenose whipray	X	X	X	X
55	Himantura uarnak (Forsskal, 1775)	Reticulate whipray	X	X	X	X
56	Himantura cf. uarnak	Sandakan and Kuantan Reticulate whipray				\mathbf{X}^{1}
57	Himantura undulata (Bleeker, 1852)	Honeycomb whipray	X	X	X	X
58	Himantura walga (Muller \& Henle, 1841)	Dwarf whipray	X	X		X
59	Himantura sp. A [Yano, et al. 2005]	Penang whipray	X			
60	Neotrygon cf. annotata Last, 1987	Javanese maskray				X
61	Neotrygon cf. leylandi Last, 1987	Painted maskray		X		
62	Neotrygon kuhlii (Muller \& Henle, 1841)	Bluespotted stingray	X	X	X	X

63	Neotrygon cf. picta Last \& White 2008,	Peppered maskray		X			
64	Neotrygon sp	Pointed snout maskray (Terengganu)					X^{5}
65	Pastinachus atrus (Macleay, 1883)	Eastern cowtail stingray		X		X	X
66	Pastinachus gracilicaudus Last \& ManjajiMatsumoto, 2010	Narrowtail stingray		X	X	X	X
67	Pastinachus solocirostris Last, Manjaji \& Yearsley, 2005	Roughnose stingray		X	X	X	X
68	Pastinachus cf. stellurostris Last, Fahmi \& Nyalor, 2010	Starrynose stingray					\mathbf{X}^{1}
69	Pteroplatytrygon violacea (Bonnaparte, 1832)	Pelagic stingray	X	X		X	
70	Taeniura lymma (Forsskal, 1775)	Ribbontail stingray	X	X		X	X
71	Taeniurops meyeni Muller \& Henle, 1841	Round ribbontail stingray	X	X		X	X
72	Urogymnus asperrimus (Bloch \& Schneider, 1801)	Porcupine ray	X	X		X	X
	11. Gymnuridae	Butterfly rays					
73	Gymnura japonica (Temminck \& Schlegal, 1805)	Japanese butterfly ray	X	X			X
74	Gymnura poecilura (Shaw, 1804)	Longtail butterfly ray	X	X		X	\mathbf{X}
75	Gymnura zonura (Bleeker, 1852). Identified as Aetoplatea zonura Bleeker, $1851 \text { in [1] }$	Zonetail butterfly ray	X	X		X	X
76	Gymnura sp	Perak butterfly ray					$\mathbf{X}^{\mathbf{2}}$
	12. Myliobatidae	Eagle rays					
77	Aetobatus flagellum (Bloch \& Schneider, 1801)	Longhead eagle ray		X		X	\mathbf{X}
78	Aetobatus ocellatus (Kuhl, 1823)	Ocellated eagle ray	X	X		X	X
79	Aetomylaeus maculatus (Gray, 1834)	Mottled eagle ray		X		X	
80	Aetomylaeus narinari (Euphrasen, 1790)	White-spotted eagle ray	X				

81	Aetomylaeus nichofii (Bloch \& Schneider, 1801)	Banded eagle ray	X	X	X	\mathbf{X}
82	Aetomylaeus vespertilio (Bleeker, 1852)	Ornate eagle ray	X	X	X	X
	13. Rhinopteridae	Cownose rays				
83	Rhinoptera adspersa Muller \& Henle, 1841	Rough cownose ray	X	X		
84	Rhinoptera javanica Muller \& Henle, 1841	Javanese cownose ray		X	X	X
85	Rhinoptera jayakari Boulenger, 1895	Short-tail cownose ray		X	X	X
	14. Mobulidae	Devil rays				
86	Manta alfredi (Kreff, 1868)	Alfred manta				X
87	Manta birostris (Walbaum, 1792)	Manta ray	X	X		X
88	Mobula japanica (Muller \& Henle, 1841)	Spinetail devil ray			X	X
89	Mobula kuhlii (Muller \& Henle, 1841)	Shortfin devil ray	X	X		X
90	Mobula thurstoni (Lloyd, 1908)	Sicklefin devil ray	X	X		X
91	Mobula sp	Borneo devil ray		X	X	
	ORDER CHIMAERIFORMES					
	1. 1. Chimaeridae					
1	Chimaera phantasma Jordan \& Snyder, 1900	Silver chimaera	X	X	X	

ISBN 978-983-9114-73-7

